給出下列方程:①3x2+x2+x=20;②2x2-3xy+4=0;③x2-
1
x
=4;④x2=1;⑤x2-
x
3
+3=0,一元二次方程共有( 。
分析:本題根據(jù)一元二次方程的定義解答.
一元二次方程必須滿足四個條件:
(1)未知數(shù)的最高次數(shù)是2;
(2)二次項系數(shù)不為0;
(3)是整式方程;
(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.
解答:解:①由原方程得到:4x2+x-20=0,符合一元二次方程的定義.故①正確;
②2x2-3xy+4=0中含有兩個未知數(shù),屬于二元二次方程.故②錯誤;
③x2-
1
x
=4屬于分式方程.故③錯誤;
④x2=1,符合一元二次方程的定義.故④正確;
⑤x2-
x
3
+3=0,符合一元二次方程的定義.故⑤正確;
綜上所述,正確的是①④⑤,共有3個.
故選:B.
點評:本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在下列所給出的方程中,無理方程是( 。
A、x2-
2
=0
B、
1
x+3
=2
C、
3
x
+1=0
D、
1
x+3
=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

給出下列命題:
①對于實數(shù)u,v,定義一種運算“*“為:u*v=uv+v.若關于x的方程x*(a*x)=-
1
4
沒有實數(shù)根,則滿足條件的實數(shù)a的取值范圍是0<a<1;
②設直線kx+(k+1)y-1=0(k為正整數(shù))與坐標軸所構成的直角三角形的面積為Sk,則S1+S2+S3+…+S2008=
1004
2009
;
③函數(shù)y=-
1
x2
+
3
x
的最大值為2;
④甲、乙、丙3位同學選修課程,從4門課程中,甲選修2門,乙、丙各選修3門,則不同的選修方案共有48種.
其中真命題的個數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

給出下列判斷:
16
介于2和3兩個整數(shù)之間;
②如圖,G是AC中點,M是AB中點,N是BC中點,則GN=
1
2
(GB+GC);
③把方程
3x-7
0.4
-
x-0.5
0.5
-
x
0.2
=10分母中的小數(shù)化成整數(shù)得15x-
35
2
-(2x-1)-5x=10;
④若m是任意實數(shù),則式子|m|-m表示的是非負數(shù),
其中正確的是
②③④
②③④
.(請?zhí)钚蛱枺?/div>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在下列給出的方程中是二元一次方程的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

給出下列命題:
①對于實數(shù)u,v,定義一種運算“*“為:u*v=uv+v.若關于x的方程x*(a*x)=-
1
4
沒有實數(shù)根,則滿足條件的實數(shù)a的取值范圍是0<a<1;
②設直線kx+(k+1)y-1=0(k為正整數(shù))與坐標軸所構成的直角三角形的面積為Sk,則S1+S2+S3+…+S2008=
1004
2009
;
③函數(shù)y=-
1
x2
+
3
x
的最大值為2;
④甲、乙、丙3位同學選修課程,從4門課程中,甲選修2門,乙、丙各選修3門,則不同的選修方案共有48種.
其中真命題的個數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案