拋物線與x軸交于點A、B,與y軸交于點C,則△ABC的面積為             

6

解析試題分析:拋物線與x軸交于點A、B,令,變形為,因式分解為,解得x=1,x=-3,所以A、B兩點的橫坐標為-3,1;拋物線與y軸交于點C,令x="0," ,所以C點的縱坐標為3;△ABC的面積==6
考點:拋物線
點評:本題考查拋物線,解答本題需要掌握求拋物線與坐標軸交點的方法,并知道這些交點構成的三角形的面積跟點的坐標的關系

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:在直角坐標系中,A、B兩點是拋物線y=x2-(m-3)x-m與x軸的交點(A在B的右側),x1、x2分別是A、B兩點的橫坐標,且|x1-x2|=3.
(1)當m>0時,求拋物線的解析式.
(2)如果(1)中所求的拋物線與y軸交于點C,問y軸上是否存在點D(不含與C重合的點),使得以D、O、A為頂點的三角形與△AOC相似?若存在,請求出D點的坐標;若不存在,請說明理由.
(3)一次函數(shù)y=kx+b的圖象經(jīng)過拋物線的頂點,且當k>0時,圖象與兩坐標軸所圍成的面積是
15
,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-1,0),與y軸交于點C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個交點B的坐標;
(2)求拋物線的解析式;
(3)設拋物線的頂點為D,在其對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(4)若點M是拋物線上一點,以B、C、D、M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標為
(-3n,0)
(-3n,0)
;B的坐標
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山模擬)如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:AB•CD=PB•PD.
(2)如圖乙,也是一個“三垂圖”,上述結論成立嗎?請說明理由.
(3)已知拋物線與x軸交于點A(-1,0),B(3,0),與y軸交于點(0,-3),頂點為P,如圖丙所示,若Q是拋物線上異于A、B、P的點,使得∠QAP=90°,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-
1
2
x2+mx+n
與x軸交于不同的兩點A(x1,0),B(x2,0),點A在點B的左邊,拋物線與y軸交于點C,若A,B兩點位于y軸異側,且tan∠CAO=tan∠BCO=
1
3
,求拋物線的解析式.

查看答案和解析>>

同步練習冊答案