【題目】如圖,正方形的邊長(zhǎng)為10,,,連接,則線段的長(zhǎng)為( )
A.B.C.D.
【答案】B
【解析】
延長(zhǎng)DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.
解:延長(zhǎng)DH交AG于點(diǎn)E
∵四邊形ABCD為正方形
∴AD=DC=BA=10,∠ADC=∠BAD=90°
在△AGB和△CHD中
∴△AGB≌△CHD
∴∠BAG=∠DCH
∵∠BAG+∠DAE=90°
∴∠DCH+∠DAE=90°
∴CH2+DH2=82+62=100= DC2
∴△CHD為直角三角形,∠CHD=90°
∴∠DCH+∠CDH=90°
∴∠DAE=∠CDH,
∵∠CDH+∠ADE=90°
∴∠ADE=∠DCH
在△ADE和△DCH中
∴△ADE≌△DCH
∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°
∴EG=AG-AE=2,HE= DE-DH=2,∠GEH=180°-∠AED=90°
在Rt△GEH中,GH=
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象開(kāi)口向上,圖象經(jīng)過(guò)點(diǎn)(-1,2)和(1,0),且與y
軸相交于負(fù)半軸。給出四個(gè)結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號(hào)是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)是1.
(1)求點(diǎn)A的坐標(biāo)及雙曲線的解析式;
(2)點(diǎn)B是雙曲線上一點(diǎn),且點(diǎn)B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;
(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中,錯(cuò)誤的有( )
①在Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)為5;
②△ABC的三邊長(zhǎng)分別為AB,BC,AC,若+=,則∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④若三角形的三邊長(zhǎng)之比為3:4:5,則該三角形是直角三角形.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點(diǎn),若將直線向右平移個(gè)單位得到直線,與軸,軸分別交于,兩點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)如圖1,若點(diǎn)是直線上一動(dòng)點(diǎn),且,軸,連接,求的最小值及此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到線段,延長(zhǎng)線段得到直線,線段在直線上移動(dòng),當(dāng)以點(diǎn)、、構(gòu)成的三角形是等腰三角形時(shí),直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com