【題目】 為更新果樹品種,某果園計劃新購進(jìn)A、B兩個品種的果樹苗栽植培育,若計劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

1)求yx的函數(shù)關(guān)系式;

2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設(shè)計購買方案,使總費用最低,并求出最低費用.

【答案】(1)y=6.4x+32;(2)當(dāng)購買數(shù)量x=35時,W總費用最低,W最低=137元.

【解析】

試題(1)利用得到系數(shù)法求解析式,列出方程組解答即可;(2)根據(jù)所需費用為W=A種樹苗的費用+B種樹苗的費用,即可解答.

試題解析:(1)設(shè)yx的函數(shù)關(guān)系式為:y=kx+b, 把(20,160),(40,288)代入y=kx+b得:

解得:∴y=6.4x+32

2∵B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,∴22.5≤x≤35

設(shè)總費用為W元,則W=6.4x+32+745﹣x=﹣0.6x+347,

∵k=﹣0.6, ∴yx的增大而減小, 當(dāng)x=35時,W總費用最低,W最低=﹣0.6×35+347=137(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A0,12),B(-50),連接AB.將△AOB沿過點B的直線折疊,使點A落在x軸上的點處,折痕所在的直線交y軸正半軸于點C,則點C的坐標(biāo)為___________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三個頂點在邊長為1的正方形網(wǎng)格中,已知,,.

(1)畫出關(guān)于軸對稱的(其中,分別是,,的對應(yīng)點,不寫畫法);

(2)分別寫出,三點的坐標(biāo).

(3)請寫出所有以為邊且與全等的三角形的第三個頂點(不與重合)的坐標(biāo)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.垂美四邊形有如下性質(zhì):

垂美四邊形的兩組對邊的平方和相等.

已知:如圖1,四邊形ABCD是垂美四邊形,對角線AC、BD相交于點E.

求證:AD2+BC2=AB2+CD2

證明:四邊形ABCD是垂美四邊形

∴AC⊥BD,

∴∠AED=∠AEB=∠BEC=∠CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,

AB2+CD2=AE2+BE2+CE2+DE2,

∴AD2+BC2=AB2+CD2

拓展探究:

(1)如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)如圖3,在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;

問題解決:

如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖等腰,,于點D,點PBA延長線上一點,點O是線段AD上一點,,下面的結(jié)論:;是等邊三角形;;其中正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)是(22),若點Px軸上,且△APO是直角三角形,則點P的坐標(biāo)是 ________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,在ABC中,C=60°,A=40°.

(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點D,交AB于點E(保留作圖痕跡,不要求寫作法和證明);

(2)求證:BD平分CBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①無理數(shù)都是無限小數(shù);

的算術(shù)平方根是3;

③數(shù)軸上的點與實數(shù)一一對應(yīng);

④平方根與立方根等于它本身的數(shù)是01;

⑤若點A-2,3)與點B關(guān)于x軸對稱,則點B的坐標(biāo)是(-2-3.

其中正確的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案