【題目】如圖,邊長為2的正方形繞點逆時針旋轉(zhuǎn)得正方形.圖中陰影部分的面積為__________

【答案】

【解析】

設(shè)BC′與CD的交點為E,連接AE,利用“HL”證明RtABERtADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠BAE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積四邊形ADEB′的面積,列式計算即可得解.

解:如圖,設(shè)BC′與CD的交點為E,連接AE,

RtABERtADE中,

,

RtABERtADEHL),

∴∠DAE=∠BAE,

∵旋轉(zhuǎn)角為30°,

∴∠DAB′=60°,

∴∠DAE×60°=30°,

DE2×tan30°=2×,

∴陰影部分的面積=2×22×(×)=

故填:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師和小明同學(xué)玩數(shù)學(xué)游戲,老師取出一個不透明的口袋,口袋中裝有三張分別標(biāo)有數(shù)字1,2,3的卡片,卡片除數(shù)字個其余都相同,老師要求小明同學(xué)兩次隨機抽取一張卡片,并計算兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率,于是小明同學(xué)用畫樹狀圖的方法尋求他兩次抽取卡片的所有可能結(jié)果,題20圖是小明同學(xué)所畫的正確樹狀圖的一部分.

1)補全小明同學(xué)所畫的樹狀圖;

2)求小明同學(xué)兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。

A.5 cmB.4.8 cmC.4.6 cmD.4 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3,頂點為E,該拋物線與x軸交于A,B兩點,與y軸交子點C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,是直角三角形,,點由點開始向點的速度運動,點由點開始向點的速度運動,若、同時開始運動。

1)運動多少秒時是直角三角形?

2)運動多少秒時△的面積是面積的?

3)運動多少秒時的長度是?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M為拋物線x軸的焦點為A(-3,0),B(1,0),與y軸交于點C,連結(jié)AM,AC,點D為線段AM上一動點(不與A重合),以CD為斜邊在CD上側(cè)作等腰RtDEC,連結(jié)AE,OE.

(1)求拋物線的解析式及頂點M的坐標(biāo);

(2)求解AD:OE的值;

(3)當(dāng)OEC為直角三角形時,求AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點P是以C(﹣,)為圓心,1為半徑的⊙C上的一個動點,已知A(﹣1,0),B1,0),連接PA,PB,則PA2+PB2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校舉辦的弘揚社會主義核心價值觀為主題的演講比賽中,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?/span>10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲隊成績的中位數(shù)是      分,乙隊成績的眾數(shù)是      分;

2)計算乙隊的平均成績和方差;

3)已知甲隊成績的方差是1.4,則成績較為整齊的是      隊.

查看答案和解析>>

同步練習(xí)冊答案