數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教網
(1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
分析:根據例題所示選擇合適的圖形來解決問題,對于題目中所給的奇數(shù)相加的公式,我們不難發(fā)現(xiàn)它的遞增也是有規(guī)律的,所以我們仍可以參照例子作出相應的圖形利用平行四邊形法求解;另外我們可以發(fā)現(xiàn)公式的增值是2,我們可以看做是在原點的基礎上伸出兩個端點依次加2,然后這n個圖形相組合,可以得到多個答案,選擇你認為最為簡單的圖形進行解答.
解答:解:(1)
精英家教網
因為組成此平行四邊形的小圓圈共有n行,每行有[(2n-1)+1]個,即2n個,
所以組成此平行四邊形的小圓圈共有(n×2n)個,即2n2個.
∴1+3+5+7+…+(2n-1)=
n[(2n-1)+1]
2
=n2

(2)
精英家教網
因為組成此正方形的小圓圈共有n行,每行有n個,所以共有(n×n)個,即n2個.
∴1+3+5+7+…+(2n-1)=n×n=n2
點評:把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀題:我國著名數(shù)學家華羅庚說過:“數(shù)缺形時少直觀,形小數(shù)時難入微,數(shù)形結合百般好,隔離分家事萬休.”數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例:求1+2+3+4+…+n的值,其中n是正整數(shù);
如果采用數(shù)形結合的方法,現(xiàn)利用圖形的性質來求1+2+3+4+…+n的值,方案如下:
如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3…n個小圓圈的個數(shù)恰好為所求式子1+2+3+4+…+n的值,為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

①仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n為正整數(shù)(要求畫出圖形,寫出結果即可)
②試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)(要求畫出圖形,寫出結果即可)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百般好,隔離分家萬事休”.數(shù)學中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉化,相互滲透.
數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

(1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,精英家教網并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百般好,隔離分家萬事休”.數(shù)學中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉化,相互滲透.
數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為數(shù)學公式,即1+2+3+4+…+n=數(shù)學公式
(1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百般好,隔離分家萬事休”.數(shù)學中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉化,相互滲透.

數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.

例如,求1+2+3+4+…+n的值,其中n是正整數(shù).

對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.

如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為,即1+2+3+4+…+n=

(1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

同步練習冊答案