【題目】Rt△ABC中,∠C=90°,AC=,點D為BC邊上一點,且BD=AD,∠ADC=60°,則△ABC的周長為_____.(結果保留根號)
【答案】3+3.
【解析】
要求△ABC的周長,只要求得BC及AB的長度即可.在Rt△ADC中,∠ADC=60°可得∠DAC=30°,可得CD=AD,再根據(jù)勾股定理可以求得AD,CD的長度,繼而求得BC的長度,最后運用勾股定理可以求得AB的長度,得出△ABC的周長.
解:在Rt△ADC中,∠C=90°,∠ADC=60°,
∴∠DAC=30°,∴CD=AD,
根據(jù)勾股定理可得,AD2=CD2+AC2,
∴4CD2=CD2+3,∴CD=1,AD=2,
∴BC=BD+DC=AD+DC=3.
在Rt△ABC中,AB==2,
∴△ABC的周長=AB+BC+AC=2+3+=3+3.
故答案為:3+3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BC和CD上,下列結論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法不正確的是( )
A.△ABE的面積=△BCE的面積B.∠AFG=∠AGF
C.BH=CHD.∠FAG=2∠ACF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,沿CD折疊,使點B落在CA邊上的B′處,展開后,再沿BE折疊,使點C落在BA邊上的C′處,CD與BE交于點F.
(1)求AC′的長度;
(2)求CE的長度;
(3)比較四邊形EC′DF與△BCF面積的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.
(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;
(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com