如圖1,已知A (0,a),B(b,0),點(diǎn)P為△ABO的角平分線的交點(diǎn).

(1)若a、b滿(mǎn)足|a+b|+a2-4a+4=0.求A、B的坐標(biāo);
(2)連OP,在(1)的條件下,求證:OP+OB=AB;
(3)如圖2.PM⊥PA交x軸于M,PN⊥AB于N,試探究:AO-OM與PN之間的數(shù)量關(guān)系.

解:(1)∵|a+b|+a2-4a+4=0,
|a+b|+(a-2)2=0,
a+b=0,a-2=0,
a=2,b=-2,
∴A的坐標(biāo)是(0,2),B的坐標(biāo)是(-2,0);

(2)連接AP、BP,在x軸正半軸截取OM=OP,連接PM,
則∠OMP=∠OPM=∠POB,
∵P為△AOB角平分線交點(diǎn),∠AOB=90°,OA=OB,
∴∠BAO=∠AOP=∠BOP=∠ABO=45°,
∴∠ABP=∠MBP,∠PMO=∠OAP=∠BAP=×45°=22.5°,
在△ABP和△MBP中

∴△ABP≌△MBP(AAS),
∴AB=BM=OB+OP.

(3)AO-OM=2PN,
理由是:作 PE⊥x軸于E,PF⊥y軸于 F,
則∠AFP=∠MEP=90°,
∵P是△AOB角平分線交點(diǎn),
∴PF=PE,
∵PE⊥x軸,PF⊥y軸,
∴∠PFO=∠PEO=∠FOE=90°,
∴∠FPE=90°,
∵AP⊥PM,
∴∠APM=90°=∠FPE,
∴∠APM-∠FPM=∠FPE-∠FPM,
即∠APF=∠MPE,
在△APF和△MPE中

∴△APF≌△MPE,
∴AF=EM,
∴AO-OM=(AF+OF)-(EM-OE)
=20E
=2PN,
即AO-OM=2PN.
分析:(1)求出a、b的值,即可得出答案;
(2)連接AP、BP,在x軸正半軸截取OM=OP,連接PM,求出∠OMP=∠OPM=∠POB,∠ABP=∠MBP,∠PMO=∠OAP=∠BAP=22.5°,根據(jù)AAS證△ABP≌△MBP,推出AB=BM即可;
(3)作 PE⊥x軸于E,PF⊥y軸于F,求出PF=PE,∠APF=∠MPE,根據(jù)ASA證△APF≌△MPE,推出AF=EM即可.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,角平分線性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)下列說(shuō)法:
(1)如圖1,已知PA=PB,則PO是線段AB的垂直平分線;
(2)對(duì)于反比例函數(shù)y=
2
x
,(x1,y1),(x2,y2)是其圖象上兩點(diǎn),若x1<x2,則y1>y2; 
(3)對(duì)角線互相垂直平分的四邊形是菱形;
(4)如圖2,在△ABC中,∠A=30°,BC=2,則AC=4;
(5)一組對(duì)邊平行的四邊形是梯形;    
(6)y=
k
x
是反比例函數(shù);
(7)若一個(gè)等腰三角形的兩邊長(zhǎng)為2和3,那么它的周長(zhǎng)為7,
其中正確的有( 。﹤(gè).
A、0B、1C、2D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連接AE、BF.求證:AE=BF;
(2)為響應(yīng)市人民政府“形象勝于生命”的號(hào)召,在甲建筑物上從A點(diǎn)到E點(diǎn)掛一長(zhǎng)為30m的宣傳條幅(如圖2),在乙建筑物的頂部D點(diǎn)測(cè)得頂端A點(diǎn)的仰角為45°,測(cè)得條幅底端E點(diǎn)的俯角為30°,求底部不能直接到達(dá)的兩建筑物之間的水平距離(答案可帶根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k′x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問(wèn)題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為
 
;若點(diǎn)A的橫坐標(biāo)為m,則點(diǎn)B的坐標(biāo)可表示為
 
;
(2)如圖2,過(guò)原點(diǎn)O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點(diǎn),點(diǎn)P在第一象限.
①說(shuō)明四邊形APBQ一定是平行四邊形;
②設(shè)點(diǎn)A,P的橫坐標(biāo)分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫(xiě)出m,n應(yīng)滿(mǎn)足的條件;若不可能,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知正方形ABCD,將一個(gè)45度角∝的頂點(diǎn)放在D點(diǎn)并繞D點(diǎn)旋轉(zhuǎn),角的兩邊分別交AB邊和BC邊于點(diǎn)E和F,連接EF.求證:EF=AE+CF
(1)小明是這樣思考的:延長(zhǎng)BC到G,使得CG=AE,連接DG,先證△DAE≌△DCG,再證△DEF≌△DGF,請(qǐng)你借助圖2,按照小明的思路,寫(xiě)出完整的證明思路.
(2)劉老師看到這條題目后,問(wèn)了小明兩個(gè)小問(wèn)題:①如果正方形的邊長(zhǎng)和△BEF的面積都等于6,求EF的長(zhǎng)②將角∝繞D點(diǎn)繼續(xù)旋轉(zhuǎn),使得角∝的兩邊分別和AB邊延長(zhǎng)線、BC邊的延長(zhǎng)線交于E和F,如圖3所示,猜想EF、AE、CF三線段之間的數(shù)量關(guān)系并給予證明.請(qǐng)你幫忙解決.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,已知A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DE⊥AC,BF⊥AC,且AB=CD.
(1)試問(wèn)OE=0F嗎?請(qǐng)說(shuō)明理由.
(2)若△DEC沿AC方向平移到如圖乙的位置,其余條件不變,上述結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案