(2011•新華區(qū)一模)如圖,用一塊直徑為a的圓桌布平鋪在對角線長為a的正方形桌面上,若四周下垂的最大長度相等,則桌布下垂的最大長度x為   
【答案】分析:本題已知正方形的對角線長是a,就可求出正方形的邊長,從而求解.
解答:解:根據(jù)題意畫出圖形,如圖所示:
對角線長為a的正方形桌面的邊長EF=a,
又∵四邊形AEFD為矩形,
∴AD=EF=a,又BC=a,
∴AB===
則桌布下垂的最大長度為
故答案為:
點評:本題利用了圓內接正方形的邊長與圓的直徑的關系求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•新華區(qū)一模)解方程組:
3x+2y=5             ①
5x-4y=1              ②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•新華區(qū)一模)在圖中的方格紙中,每個小方格都是邊長為1個單位長的正方形,△ABC的3個頂點都在格點上(每個小方格的頂點叫格點).
(1)畫出△A1B1C1,使得△A1B1C1與ABC關于直線l對稱;
(2)畫出ABC繞點O順時針旋轉90°后的A2B2C2,并求點A旋轉到A2所經(jīng)過的路線長;
(3)A1B1C1與A2B2C2
軸對稱
軸對稱
.(填”中心對稱“或”軸對稱“)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•新華區(qū)一模)我們知道:根據(jù)二次函數(shù)的圖象,可以直接確定二次函數(shù)的最大(。┲担桓鶕(jù)“兩點之間,線段最短”,并運用軸對稱的性質,可以在一條直線上找到一點,使得此點到這條直線同側兩定點之間的距離之和最短.
這種數(shù)形結合的思想方法,非常有利于解決一些數(shù)學和實際問題中的最大(小)值問題.請你嘗試解決一下問題:
(1)在圖1中,拋物線所對應的二次函數(shù)的最大值是
4
4

(2)在圖2中,相距3km的A、B兩鎮(zhèn)位于河岸(近似看做直線l)的同側,且到河岸的距離AC=1千米,BD=2千米,現(xiàn)要在岸邊建一座水塔,分別直接給兩鎮(zhèn)送水,為使所用水管的長度最短,請你:
①作圖確定水塔的位置;
②求出所需水管的長度(結果用準確值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此問題可以通過數(shù)形結合的方法加以解決,具體步驟如下:
①如圖3中,作線段AB=6,分別過點A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5
;
②在AB上取一點P,可設AP=
x
x
,BP=
y
y
;
x2+9
+
y2+25
的最小值即為線段
PC
PC
和線段
PD
PD
長度之和的最小值,最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•新華區(qū)一模)在矩形ABCD中,E是BC邊上的動點(點E不與端點B、C重合),以AE為邊,在直線BC的上方作矩形AEFG,使頂點G恰好落在射線CD上,連接AC、FC,并過點F作FH⊥BC,交BC的延長線于點H.
(1)如圖1,當AB=BC時;
①求證:矩形AEFG是正方形;
②猜想AC、FC的位置關系,并證明你的猜想.
(2)如圖2,當AB≠BC時,上面的猜想還成立嗎?若不成立,請說明理由;若成立,請給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•新華區(qū)一模)如圖,在直角梯形ABCD中,∠A=90°,AD=4,CD=3,BC=5,點E從A點出發(fā)以每秒2個單位長的速度向B點運動,點F從C點同時出發(fā),以每秒1個單位長的速度向D點運動.設運動時間為t秒,當一個動點到達終點時,另一個動點也隨之停止運動,過點F作FH⊥AB于點P,連接BD交FP于點O,連接OE.
(1)底邊AB=
6
6

(2)設△BOE的面積為S△BOE;
①求S△BOE與時間t的函數(shù)關系式;
②當t為何值時,S△BOE=
16
S梯形ABCD
(3)是否存在點E,使得△BOE為直角三角形;若存在,求出t的值;若不存在,請說明理由;
(4)是否存在某一時刻,使得OE∥BC?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案