已知拋物線y=ax2+bx+c的圖象交x軸于點(diǎn)A(x,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對(duì)稱軸是直線x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過B、C、D三點(diǎn)的拋物線的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點(diǎn),以MN為一邊,拋物線上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式;
(4)當(dāng)<x<4時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請(qǐng)求出;若無,請(qǐng)說明理由.
【答案】分析:(1)因?yàn)橐阎狟點(diǎn)坐標(biāo)和對(duì)稱軸,所以可根據(jù)對(duì)稱軸公式求出A點(diǎn)坐標(biāo);根據(jù)銳角三角函數(shù)的定義可求出C點(diǎn)坐標(biāo),根據(jù)x軸上的點(diǎn)關(guān)于y軸對(duì)稱的特點(diǎn)可求出D點(diǎn)坐標(biāo).
(2)因?yàn)锽、D兩點(diǎn)為拋物線與x軸的交點(diǎn),所以可設(shè)出二次函數(shù)的交點(diǎn)式,再用待定系數(shù)法求出函數(shù)的解析式.
(3)根據(jù)過點(diǎn)(0,3)且平行于x軸的直線與(2)中的拋物線相交于M.N,可求出M、N的坐標(biāo),及兩點(diǎn)之間的距離,再根據(jù)拋物線的頂點(diǎn)坐標(biāo)求出P點(diǎn)縱坐標(biāo)y的取值范圍,根據(jù)其取值范圍即可求出S與y之間的函數(shù)關(guān)系式.
(4)因?yàn)镸N之間的距離為定值,故只要在<x<4范圍內(nèi)|y|最大,則平行四邊形的面積最大.根據(jù)(3)中S與y之間的函數(shù)關(guān)系式即可求出S的最大值.
解答:解:(1)∵點(diǎn)A與點(diǎn)B關(guān)于直線x=-1對(duì)稱,點(diǎn)B的坐標(biāo)是(2,0)
∴點(diǎn)A的橫坐標(biāo)是=-1,x=-4,
故點(diǎn)A的坐標(biāo)是(-4,0)(1分)
∵tan∠BAC=2即=2,可得OC=8
∴C(0,8)(2分)
∵點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為D
∴點(diǎn)D的坐標(biāo)是(4,0)(3分)

(2)設(shè)過三點(diǎn)的拋物線解析式為y=a(x-2)(x+4)
代入點(diǎn)C(0,8),解得a=-1(4分)
∴拋物線的解析式是y=-x2-2x+8;(5分)

(3)∵拋物線y=-x2-2x+8與過點(diǎn)(0,3)平行于x軸的直線相交于M點(diǎn)和N點(diǎn)
∴M(1,3),N(5,3),|MN|=4(6分)
而拋物線的頂點(diǎn)為(3,-1)
當(dāng)y>3時(shí)
S=4(y-3)=4y-12
當(dāng)-1≤y<3時(shí)
S=4(3-y)=-4y+12(8分)

(4)以MN為一邊,P(x,y)為頂點(diǎn),且當(dāng)<x<4的平行四邊形面積最大,只要點(diǎn)P到MN的距離h最大
∴當(dāng)x=3,y=-1時(shí),h=4
S=|MN|•h=4×4=16
∴滿足條件的平行四邊形面積有最大值16.(10分)
點(diǎn)評(píng):此題比較復(fù)雜,閱讀量較大,把動(dòng)點(diǎn)問題與二次函數(shù)的性質(zhì)相結(jié)合,有一定的綜合性,但難度適中,是一道較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點(diǎn)是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案