將n個(gè)邊長都為2cm的正方形按如圖所示的方法擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則2014個(gè)這樣的正方形重疊部分(陰影部分)的面積和為
 
cm2
考點(diǎn):正方形的性質(zhì),全等三角形的判定與性質(zhì)
專題:
分析:根據(jù)題意可得,陰影部分的面積是正方形的面積的
1
4
,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為(n-1)陰影部分的和.
解答:解:作A1E⊥A2E,A1F⊥A2H.
則∠FA1E=∠HA1G=90°,
∴∠FA1H=∠GA1E,
在△A1HF和△A1GE中,
∠FA1H=∠GA1E
A1F=A1E
A1FH=∠A1EG

∴△A1HF≌△A1GE,
∴四邊形A2HA1G的面積=四邊形A1EA2F的面積=
1
4
×4=1,
同理,各個(gè)重合部分的面積都是1.
則n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為1×(n-1)=n-1(cm2
∴2014個(gè)這樣的正方形重疊部分(陰影部分)的面積和為:2014-1=2013(cm2
故答案為:2013.
點(diǎn)評:考查了正方形的性質(zhì),解決本題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:3x+16的立方根是4,求2x+4的算術(shù)平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的面積為1,第一次操作:分別延長AB,BC,CA,至點(diǎn)A1,B1,C1,使A1B=AB,B1C=2BC,C1A=2CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2,B2,C2,得到△A2B2C2,按此規(guī)律,要是得到的三角形的面積為38416,需要經(jīng)過
 
次操作.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果(x-3)(x+5)=x2+mx+n,那么m、n的值分別為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是某種蠟燭在燃料過程中高度與時(shí)間之間關(guān)系的圖象.由圖我們可以知道,此蠟燭燃燒30分鐘后,高度為
 
厘米,經(jīng)過
 
小時(shí)燃燒完畢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明在解方程時(shí),突然發(fā)生了這樣的想法:x2=-1這個(gè)方程在實(shí)數(shù)范圍內(nèi)無解,如果存在一個(gè)數(shù)i2=-1,那么方程x2=-1可以變?yōu)閤2=i2,則x=±i,從而x=±i是方程x2=-1的兩個(gè)解.小明還發(fā)現(xiàn)i具有如下性質(zhì):i1=i,i2=-1,i3=i2•i=(-1)i=-i,i4=(i22=(-1)2=1,i5=i4•i=i,i6=(i23=(-1)2=1,i7=i6•i=-i,i8=(i42=1,…
請你觀察上述等式,根據(jù)發(fā)現(xiàn)的規(guī)律填空:i4n+1=
 
,i4n+2=
 
,i4n+3=
 
(n為自然數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一塊電腦主板的示意圖,每一轉(zhuǎn)角處都是直角.?dāng)?shù)據(jù)如圖(單位:mm),則該主板的周長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用四舍五入法,精確到0.01,將1022.0099取近似值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

線段CD是由線段AB平移得到的,點(diǎn)A(-1,4)的對應(yīng)點(diǎn)為C(4,7),則點(diǎn)B(-4,-7)的對應(yīng)點(diǎn)D的坐標(biāo)為(  )
A、(2,9)
B、(5,3)
C、(1,-4)
D、(-9,-4)

查看答案和解析>>

同步練習(xí)冊答案