圖形的平移、旋轉(zhuǎn)、軸對(duì)稱(chēng)中,其相同的性質(zhì)是_________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)的坐標(biāo)為(0,4).將矩形OABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使B點(diǎn)落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點(diǎn)M.
(1)求點(diǎn)B1的坐標(biāo)與線段B1C的長(zhǎng);
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過(guò)程中的某一位置,BC,A2B2相交于點(diǎn)M1,點(diǎn)P運(yùn)動(dòng)到C點(diǎn)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)如圖3,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),平移后的矩形為PA3B3C3.請(qǐng)你思考如何通過(guò)圖形變換使矩形PA3B3C3與原矩形OABC重合,請(qǐng)簡(jiǎn)述你的做法.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,矩形OABC的邊OA在x軸的負(fù)半軸上,邊OC在y軸的正半軸上,且OA=1,OC=2.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到矩形DEFG(如圖1).
(1)若拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B和F,求此拋物線的解析式;
(2)將矩形DEFG以每秒1個(gè)單位長(zhǎng)度的速度沿x軸負(fù)方向平移,平移t秒時(shí),所成圖形如圖2所示.
①圖2中,在0<t<1的條件下,連接BF,BF與(1)中所求拋物線的對(duì)稱(chēng)軸交于點(diǎn)Q,設(shè)矩形DEFG與矩形OABC重合部分的面積為S1,△AQF的面積為S2,試判斷S1+S2的值是否發(fā)生變化?如果不變,求出其值;
②在0<t<3的條件下,P是x軸上一點(diǎn),請(qǐng)你探究:是否存在t值,使以PB為斜邊的Rt△PFB與Rt△AOC相似?若存在,直接寫(xiě)出滿(mǎn)足條件t的值及點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由(利用圖3分析探索).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,平面直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,A(1,0),C(3,0),B(3,-精英家教網(wǎng)3).將先向左平移6個(gè)單位得到Rt△A1B1C1,再將Rt△A1B1C1繞A1點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到Rt△A1B2C2
(1)請(qǐng)?jiān)谥苯亲鴺?biāo)系中畫(huà)出Rt△A1B1C1和Rt△A1B2C2
(2)請(qǐng)你結(jié)合圖象變換的知識(shí)回答:Rt△A1B2C2能否直接由Rt△ABC繞某一點(diǎn)P逆時(shí)針旋轉(zhuǎn)角α(0<α<360)而來(lái)?若能,請(qǐng)你直接寫(xiě)出P點(diǎn)的坐標(biāo)及旋轉(zhuǎn)角α的度數(shù);若不能,請(qǐng)說(shuō)明理由;
(3)在直接將Rt△ABC繞P點(diǎn)逆時(shí)針旋轉(zhuǎn)角α得到Rt△A1B2C2的過(guò)程中,求線段BC在旋轉(zhuǎn)過(guò)程中掃過(guò)圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度; 
①將△ABC向x軸正方向平移5個(gè)單位得△A1B1C1;
②將△ABC再以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°得△A2B2C2,畫(huà)出平移和旋轉(zhuǎn)后的圖形,并標(biāo)明對(duì)應(yīng)字母.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(-2,0),等邊三角形AOC經(jīng)過(guò)平移或軸對(duì)稱(chēng)或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是
2
2
個(gè)單位長(zhǎng)度;
(2)△AOC與△BOD關(guān)于直線對(duì)稱(chēng),則對(duì)稱(chēng)軸是
y軸
y軸

(3)△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)可以得到△DOB,則旋轉(zhuǎn)角度是
120
120
度,在此旋轉(zhuǎn)過(guò)程中,△AOC掃過(guò)的圖形的面積是

查看答案和解析>>

同步練習(xí)冊(cè)答案