【題目】如圖,直線y=﹣3x+3與x軸交于點B,與y軸交于點A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點C落在雙曲線y= (k≠0)上,將正方形ABCD沿x軸負(fù)方向平移a個單位長度,使點D恰好落在雙曲線y= (k≠0)上的點D1處,則a=

【答案】2
【解析】解:對于直線y=﹣3x+3,
令x=0,得到y(tǒng)=3;令y=0,得到x=1,即A(0,3),B(1,0),
過C作CE⊥x軸,交x軸于點E,過A作AF∥x軸,過D作DF垂直于AF于F,如圖所示,

∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,
∴∠OAB+∠ABO=90°,∠ABO+∠EBC=90°,
∴∠OAB=∠EBC,
在△AOB和△BEC中,

∴△AOB≌△BEC(AAS),
∴BE=AO=3,CE=OB=1,
∴C(4,1),
把C坐標(biāo)代入反比例解析式得:k=4,即y= ,
同理得到△DFA≌△BOA,
∴DF=BO=1,AF=AO=3,
∴D(3,4),
把y=4代入反比例解析式得:x=1,即D1(1,4),
則將正方形ABCD沿x軸負(fù)方向平移2個單位長度,使點D恰好落在雙曲線y= (k≠0)上的點D1處,即a=2,
故答案為:2.
對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標(biāo),后根據(jù)三角形全等得出C點坐標(biāo),進(jìn)而求出反比例函數(shù)的解析式,進(jìn)而確定D點的坐標(biāo)和D1點的坐標(biāo),即可確定出a的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件
B.審查書稿中有哪些學(xué)科性錯誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a、b相交于點O,∠1=50°,點A在直線a上,直線b上存在點B,使以點O、A、B為頂點的三角形是等腰三角形,這樣的B點有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,CB=CD,AB ∥ CD.

(1)求證:四邊形ABCD是菱形.

(2)當(dāng)△ABD滿足什么條件時,四邊形ABCD是正方形.(直接寫出一個符合要求的條件).

(3)對角線AC和BD交于點O,∠ ADC =120°,AC=8, P為對角線AC上的一個動點,連接DP,將DP繞點D逆時針方向旋轉(zhuǎn)120°得到線段DP1,直接寫出A P1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax﹣a與y= (a≠0)在同一直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1 , x2 , 且滿足x12+x22=3x1x2 , 求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);

(2)如圖(2),將∠COD繞頂點O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時,∠COE=2DOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四個幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個面,9條棱,6個頂點,觀察圖形,填寫下面的空.

1)四棱柱有   個面,   條棱,   個頂點;

2)六棱柱有   個面,   條棱,   個頂點;

3)由此猜想n棱柱有   個面,   條棱,   個頂點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時,求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最小值與最大值.

查看答案和解析>>

同步練習(xí)冊答案