【題目】如圖,正方形ABCD的對角線AC、BD相交于點O,∠CAB的平分線交BD于點E,交BC于點F.若OE=1,則CF=

【答案】2
【解析】解:作EG⊥AB于G,
根據(jù)角平分線的性質(zhì)可得,EG=OE=1,又BD平分∠ABC,
則∠ABE=45°
∴△EBG是等腰直角三角形,
可得BE= ,
則OB=1+ ,
可得BC=2+
又∠AFB=90°﹣∠FAB,∠FEB=∠OEA=90°﹣∠FAC,
∴∠AFB=∠FEB
∴BF=BE=
則CF=BC﹣BF=2+ =2.
【考點精析】本題主要考查了等腰直角三角形和正方形的性質(zhì)的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從超市(O點)出發(fā),向東走2km到達小李家(A點),繼續(xù)向東走4km到達小張家(B點),然后又回頭向西走10km到達小陳家(C點),最后回到超市

(1)以超市為原點,向東方向為正方向,用1cm表示1km,畫出數(shù)軸,并在該數(shù)軸上表示A、BC、O的位置;

(2)小陳家(C點)距小李家(A點)有多遠?

(3)若貨車每千米耗油0. 5升,這趟路貨車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(2,3),B(5,0),C(, 2).

①當時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;

②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;

(2)已知點D(1,1),點E(, ),其中點E是函數(shù)的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OM,ON分別是∠AOC,BOD的平分線,∠MON等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次獻愛心手拉手捐款活動中,某數(shù)學興趣小組對學校所在社區(qū)部分捐款戶數(shù)進行調(diào)查和分組統(tǒng)計,將數(shù)據(jù)整理成以下統(tǒng)計表和統(tǒng)計圖信息不完整,已知A,B兩組捐款戶數(shù)的比為15.

捐款戶數(shù)分組統(tǒng)計表

組別

捐款數(shù)x

戶數(shù)

A

1≤x100

a

B

100≤x200

10

C

200≤x300

20

D

300≤x400

14

E

x≥400

4

請結(jié)合以上信息解答下列問題:

1a____________,本次調(diào)查的樣本容量是____________

2補全捐款戶數(shù)統(tǒng)計表和統(tǒng)計圖;

3若該社區(qū)有600戶居民,根據(jù)以上信息估計全社區(qū)捐款不少于300元的戶數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把多項式16m3﹣mn2分解因式的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】比較大。憨仯ī52__|62|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程ax2+3x+20a0)的有個根是1,則a_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:

時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進價為每件30元,設(shè)銷售該商品每天的利潤為y元。

(1)求出y與x的函數(shù)關(guān)系式;

(2)問銷售該商品第幾天時,當天的銷售利潤最大?最大利潤是多少?

(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于4800元?請直接寫出結(jié)果。

查看答案和解析>>

同步練習冊答案