精英家教網(wǎng)探索規(guī)律,觀察下面由※組成的圖案和算式,解答問(wèn)題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52

(1)請(qǐng)猜想1+3+5+7+9+…+19=
 

(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
 
; 
(3)請(qǐng)計(jì)算:101+103+…+197+199.
分析:(1)(2)觀察數(shù)據(jù)可知,從1開(kāi)始的連續(xù)奇數(shù)的和等于首尾兩個(gè)奇數(shù)的和的一半的平方,然后計(jì)算即可得解;
(3)用從1開(kāi)始到199的和減去從1開(kāi)始到99的和,列式計(jì)算即可得解.
解答:解:(1)1+3+5+7+9+…+19=(
1+19
2
2=100;

(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=(
1+2n+3
2
2=(n+2)2;

(3)101+103+…+197+199=(
1+199
2
2-(
1+99
2
2=10000-2500=7500.
故答案為:100;(n+2)2
點(diǎn)評(píng):本題是對(duì)數(shù)字變化規(guī)律的考查,觀察出結(jié)果的底數(shù)與算式中首尾兩個(gè)數(shù)的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

33、探索規(guī)律:
觀察下面由“※”組成的圖案和算式,解答問(wèn)題:

(1)請(qǐng)猜想1+3+5+7+9+…+19=
102

(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
(n+2)2
;
(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2007+2009=
1007424

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解答題
①當(dāng)m取何值時(shí),關(guān)于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個(gè)編織袋來(lái)裝,以每袋55千克為標(biāo)準(zhǔn),超過(guò)的記作為正數(shù),不足的記作為負(fù)數(shù),現(xiàn)記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價(jià)為1.2元,則這堆小麥可賣多少錢?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問(wèn)題:精英家教網(wǎng)
(1)請(qǐng)猜想1+3+5+7+9+…+19=
 
;
(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
 
;
(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個(gè)正方形任意圈出二行二列四個(gè)數(shù),
精英家教網(wǎng)精英家教網(wǎng)
若在第二行第二列的那個(gè)數(shù)表示為a,其余各數(shù)分別為b,c,d.
精英家教網(wǎng)
(1)分別用含a的代數(shù)式表示b,c,d這三個(gè)數(shù).
(2)求這四個(gè)數(shù)的和(用含a的代數(shù)式表示,要求合并同類項(xiàng)化簡(jiǎn))
(3)這四個(gè)數(shù)的和會(huì)等于51嗎?如果會(huì),請(qǐng)算出此時(shí)a的值,如果不會(huì),說(shuō)明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

32、探索規(guī)律:觀察下面由※組成的圖案和算式,解答問(wèn)題:
1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52
(1)請(qǐng)猜想1+3+5+7+9+…+19=
100
;
(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
(n+2)2

(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2003+2005.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索規(guī)律:觀察下面由※組成的圖案和算式,解答問(wèn)題:
1+3=4=22
1+3+5=9=32
1+3+5+7=19=42
1+3+5+7+9=25=52
(1)請(qǐng)猜想1+3+5+7+9+…+19=
102
102

(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
(n+2)2
(n+2)2
;
(3)請(qǐng)用上述規(guī)律計(jì)算:103+105+107+…+2007+2009.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索規(guī)律:觀察下面由※組成的圖案和算式,
解答問(wèn)題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)2
(n+1)2
;
(2)請(qǐng)用上述規(guī)律計(jì)算:41+43+45+…+77+79=
1200
1200

查看答案和解析>>

同步練習(xí)冊(cè)答案