【題目】如圖,中,,,在直線或上取一點,使為等腰三角形,則符合條件的點共有( )
A.個B.個C.個D.個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,CE與BD相交于點M,BD交AC于點N.
(1)證明:BD=CE;
(2)證明:BD⊥CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構成的是平面斜坐標系,兩條數(shù)軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應的數(shù)分別叫做P點的x坐標和y坐標,有序實數(shù)對(x,y)稱為點P的斜坐標,記為P(x,y).
(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.
①點A、B、C在此斜坐標系內(nèi)的坐標分別為A ,B ,C .
②設點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關系為 .
③設點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關系為 .
(2)若ω=120°,O為坐標原點.
①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4 ,求圓M的半徑及圓心M的斜坐標.
②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,3),B(-4,-2),C(-1,-1).
(1)在圖中作出△ABC關于y軸對稱的△A'B'C',并寫出點C'的坐標________;
(2)在y軸上畫出點P,使PA+PC最小,并直接寫出P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明隨機抽取了某校八年級部分學生,針對他們晚上在家學習時間的情況進行調(diào)查,并將調(diào)查結果繪制成如下兩幅尚不完整的統(tǒng)計圖.根據(jù)以上信息,解答下列問題:
(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)本次抽取的八年級學生晚上學習時間的眾數(shù)是 小時,中位數(shù)是 小時;
(3)若該校共有 600 名八年級學生,則晚上學習時間超過 1.5 小時的約有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,且, 滿足,直線經(jīng)過點和.
(1) 點的坐標為( , ), 點的坐標為( , );
(2)如圖1,已知直線經(jīng)過點 和軸上一點, ,點在直線AB上且位于軸右側圖象上一點,連接,且.
①求點坐標;
②將沿直線AM 平移得到,平移后的點與點重合,為 上的一動點,當的值最小時,請求出最小值及此時 N 點的坐標;
(3)如圖 2,將點向左平移 2 個單位到點,直線經(jīng)過點和,點是點關于軸的對稱點,直線經(jīng)過點和點,動點從原點出發(fā)沿著軸正方向運動,連接,過點作直線的垂線交軸于點,在直線上是否存在點,使得是等腰直角三角形?若存在,求出點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,和都是等腰三角形,其中,,且.
(1)如圖①,連接、,求證:;
(2)如圖②,連接、,若,,,,求的長;
(3)如圖③,若,且點恰好落在上,試探究、和之間的數(shù)量關系,并加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
()將化成的形式.
()與軸的交點坐標是__________,與軸的交點坐標是__________.
()在坐標系中利用描點法畫出此拋物線.
()不等式的解集是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com