【題目】以下四組條件中,無法判定△ABC≌△DEF的是(

A. AB=DE,BC=EF,B=EB. B=E,BC=EF,C=F

C. B=E,A=D,BC=EFD. AB=DE,BC=EF,C=D

【答案】D

【解析】

全等三角形的判定方法有:SAS,ASA,AAS,SSS,HL,而SSAAAA都不能判定兩三角形全等,根據(jù)以上內(nèi)容判斷即可.

解:A、根據(jù)ABDE,BCEF,∠B=E,符合SAS,可判定ABC≌△DEF;

B、根據(jù)∠B=E,BC=EF,∠C=F,符合ASA,可判定ABC≌△DEF;

C、根據(jù)∠B=E,∠A=DBC=EF,符合AAS,可判定ABC≌△DEF

D、根據(jù)AB=DEBC=EF,∠C=D,不符合全等三角形的判定定理,不能判定ABC≌△DEF;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端DDC、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG10米,BGHG,CHAH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7sin55°≈0.8,sin35°≈0.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AC的垂直平分線DEABC的角平分線相交于點D,垂足為點E,若ABC=72°,求ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BCADBC,AB=5AD=3,AE平分∠DABBC的延長線于F點,則CF=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結論的個數(shù)是( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=CD=8cm,BC=14cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設點P的運動時間為t秒:

1BP= cm(用t的代數(shù)式表示)

2t為何值時,ABPDCP?

3當點P從點B開始運動,同時,點Q從點C出發(fā),以v cm/秒的速度沿CD向點D運動,是否存在這樣v的值,使得ABPPQC全等?若存在,請求出v的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙、丙、丁四位同學給出了四種表示該長方形面積的多項式:

①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認為其中正確的有( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

同步練習冊答案