(2012•鹽城二模)閱讀下列材料:
問題:如圖1,P為正方形ABCD內(nèi)一點(diǎn),且PA:PB:PC=1:2:3,求∠APB的度數(shù).
小娜同學(xué)的想法是:不妨設(shè)PA=1,PB=2,PC=3,設(shè)法把PA、PB、PC相對(duì)集中,于是他將△BCP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△BAE(如圖2),然后連接PE,問題得以解決.
請(qǐng)你回答:圖2中∠APB的度數(shù)為
135°
135°

請(qǐng)你參考小娜同學(xué)的思路,解決下列問題:
如圖3,P是等邊三角形ABC內(nèi)一點(diǎn),已知∠APB=115°,∠BPC=125°.
(1)在圖3中畫出并指明以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形(保留畫圖痕跡);
(2)求出以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的三角形的各內(nèi)角的度數(shù)分別等于
60°、65°、55°
60°、65°、55°

分析:圖2中,根據(jù)旋轉(zhuǎn)的性質(zhì)知△BCP≌△BAE.由全等三角形的對(duì)應(yīng)邊相等、等腰三角形的判定推知△BPE是等腰三角形,則∠BPE=∠BEP=45°;然后由全等三角形的對(duì)應(yīng)邊相等、勾股定理證得∠APE=90°;最后根據(jù)圖中角與角間的數(shù)量關(guān)系求得∠APB=135°;
(1)設(shè)法把PA、PB、PC相對(duì)集中,將△BCP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△ACM,然后連接PM,問題得以解決.
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)知∠PCM=60°,△BCP≌△ACM.然后根據(jù)全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等,周角的定義以及三角形內(nèi)角和定理來求以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的三角形的各內(nèi)角的度數(shù).
解答:解:如圖2.
∵根據(jù)旋轉(zhuǎn)的性質(zhì)知∠PBE=90°,△BCP≌△BAE.
∴BP=BE,PC=AE,
∴∠BPE=∠BEP=45°.
又PA:PB:PC=1:2:3,
∴AE2=AP2+PE2
∴∠APE=90°,
∴∠APB=∠APE+∠BPE=90°+45°=135°,即圖2中∠APB的度數(shù)為135°.
故答案是:135°;

(1)如圖3,將△BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到△ACM,然后連接PM,△APM即為所求,即以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形是△APM.以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形是△APM.

(2)如圖3.
∵根據(jù)旋轉(zhuǎn)的性質(zhì)知∠PCM=60°,△BCP≌△ACM.
∴PC=CM,∠AMC=∠BPC=125°,
∴△PCM是等邊三角形,
∴∠MPC=∠PMC=60°,∠AMP=∠AMC-∠PMC=65°.
∵∠APB=115°,∠BPC=125°,∠APB+∠BPC+∠MPC+∠APM=360°,
∴∠APM=60°,
∴∠PAM=180°-∠APM-∠AMP=55°.
∴以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的三角形的各內(nèi)角的度數(shù)分別等于  60°、65°、55°.
故答案是:60°、65°、55°.
點(diǎn)評(píng):本題綜合考查了旋轉(zhuǎn)的性質(zhì),等邊三角形和正方形的性質(zhì)以及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn).旋轉(zhuǎn)變化前后,對(duì)應(yīng)角、對(duì)應(yīng)線段分別相等,圖形的大小、形狀都不變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城二模)已知2a-b+3=0,則代數(shù)式2b-4a-3=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城二模)如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過圓心O,則折痕AB的長(zhǎng)為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城二模)(1)計(jì)算:(a-
1
a
÷
a2-2a+1
a
;    
(2)解方程:
x
2x-1
=1-
2
1-2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城二模)如圖,在平面直角坐標(biāo)系中,已知直線AB:y=-
34
x+3分別與x軸、y軸分別交于點(diǎn)A、點(diǎn)B.動(dòng)點(diǎn)P、Q分別從O、A同時(shí)出發(fā),其中點(diǎn)P以每秒1個(gè)點(diǎn)位長(zhǎng)度的速度沿OA方向向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速度沿AO返向;點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從A點(diǎn)出發(fā),沿A-B-O方向向O點(diǎn)勻速運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)O時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(2)如圖1,在某一時(shí)刻將△APQ沿PQ翻折,使點(diǎn)A恰好落在AB邊的點(diǎn)C處,求此時(shí)△APQ的面積;
(3)若D為y軸上一點(diǎn),在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,是否存在某一時(shí)刻,使得四邊形PQBD為等腰梯形?若存在,求出t的值與D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(4)如圖2,在P、Q兩點(diǎn)運(yùn)動(dòng)過程中,線段PQ的垂直平分線EF交PQ于點(diǎn)E,交折線QB-BO-OP于點(diǎn)F.問:是否存在某一時(shí)刻t,使EF恰好經(jīng)過原點(diǎn)O?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案