在下面的網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=6
(1)試作出△ABC以A為旋轉(zhuǎn)中心、沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標為(-5,5),試建立合適的直角坐標系,并寫出A、C兩點的坐標;
(3)作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并寫出A2、B2、C2三點的坐標.

【答案】分析:(1)A不變,以A為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到關(guān)鍵點C、B的對應點即可;
(2)向右5個單位,再向下5個單位即為坐標原點,建立坐標系即可;
(3)連接AO并延長AO到A2,使A20=AO,得到A的對應點,同法得到其他各點的對應點即可.
解答:解:(1)如圖(2分);

(2)如圖A(-2,-1);C(-5,-1);(5分)

(3)如圖A2(2,1)、B2(5,-5)、C2(5,1).(8分)
點評:本題考查旋轉(zhuǎn)和中心對稱作圖,掌握畫圖的方法是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

18、如圖所示,在4×4的菱形斜網(wǎng)格圖中(每一個小菱形的邊長為1,有一個角是60°),菱形ABCD的邊長為2,E是AD的中點,按CE將菱形ABCD剪成①、②兩部分,用這兩部分可以分別拼成直角三角形、等腰梯形、矩形,要求所拼成圖形的頂點均落在格點上.
(1)在下面的菱形斜網(wǎng)格中畫出示意圖;

(2)判斷所拼成的三種圖形的面積(s)、周長(l)的大小關(guān)系(用“=”、“>”或“<”連接):
面積關(guān)系是
;周長關(guān)系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在10×6的菱形斜網(wǎng)格圖中(每一個小菱形的邊長為1,有一個角是60°)有一個等腰梯形,現(xiàn)要將這個等腰梯形分別分成三個等邊三角形、四個等腰梯形、四個直角梯形.請在下面的菱形斜網(wǎng)格中畫出示意圖.(要求:圖形的頂點均落在格點上.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在4×4的菱形斜網(wǎng)格圖中(每一個小菱形的邊長為1,有一個角是60°),菱形ABCD的邊長為2,E是AD的中點,按CE將菱形ABCD剪成①、②兩部分,用這兩部分可以分別拼成直角三角形、等腰梯形、矩形,要求所拼成圖形的頂點均落在格點上.

1.(1)在下面的菱形斜網(wǎng)格中畫出示意圖;

 

 

 

 

 


2.

 

 

 

 
(2)判斷所拼成的三種圖形的面積()、周長()的大小關(guān)系(用“=”、“>”或“<”連接):

面積關(guān)系是                                       ;

周長關(guān)系是                                       

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省寧波市外貿(mào)學校中考模擬數(shù)學卷 題型:解答題

如圖所示,在4×4的菱形斜網(wǎng)格圖中(每一個小菱形的邊長為1,有一個角是60°),菱形ABCD的邊長為2,E是AD的中點,按CE將菱形ABCD剪成①、②兩部分,用這兩部分可以分別拼成直角三角形、等腰梯形、矩形,要求所拼成圖形的頂點均落在格點上.

1.(1)在下面的菱形斜網(wǎng)格中畫出示意圖;

 

 

 

 

 


2.

 

 

 

 
(2)判斷所拼成的三種圖形的面積()、周長()的大小關(guān)系(用“=”、“>”或“<”連接):

面積關(guān)系是                                       

周長關(guān)系是                                       

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬試卷5 (解析版) 題型:解答題

(2007•麗水)如圖所示,在4×4的菱形斜網(wǎng)格圖中(每一個小菱形的邊長為1,有一個角是60°),菱形ABCD的邊長為2,E是AD的中點,按CE將菱形ABCD剪成①、②兩部分,用這兩部分可以分別拼成直角三角形、等腰梯形、矩形,要求所拼成圖形的頂點均落在格點上.
(1)在下面的菱形斜網(wǎng)格中畫出示意圖;

(2)判斷所拼成的三種圖形的面積(s)、周長(l)的大小關(guān)系(用“=”、“>”或“<”連接):
面積關(guān)系是______;周長關(guān)系是______.

查看答案和解析>>

同步練習冊答案