【題目】如圖:已知等邊△ABC中,D是AC的中點,E是BC延長線上的一點,且CE=CD,DM⊥BC,垂足為M,
(1)求證:M是BE的中點.
(2)若CD=1,DE=,求△ABD的周長.
【答案】(1)證明見解析;(2)3+.
【解析】
(1)連接BD,根據(jù)等邊三角形的性質(zhì)得到∠DBC==30°,再利用三角形外角性質(zhì)得到∴∠E=30°,然后利用等角對等邊及等腰三角形三線合一的性質(zhì)進行證明;(2)利用等邊三角形的性質(zhì)和30°所對直角邊是斜邊的一半求解.
(1)連接BD,
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,AB=BC=AC,
∵D為AC的中點,
∴∠DBC==30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB=60°,
∴∠E=30°,
∴∠DBC=∠E,
∴BD=ED,
∴DM⊥BE,
∴M是BE的中點;
(2)由題意可知,BD=DE=,
∵D為AC的中點,
∴AD=CD=1,
又∵等邊△ABC中,D是AC的中點
AB=AC=2CD=2,
則△ABD的周長AB+AD+BD=3+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下列結(jié)論:①AC平分∠PAD;②∠APO=∠DCO;③△OPC是等邊三角形;④AC=AO+AP;其中正確的序號是( 。
A.①③④B.②③C.①②④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當(dāng)△EFC為直角三角形時BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點E.且OD⊥AC,垂足為點F.
(1)如圖1,如果AC=BD,求弦AC的長;
(2)如圖2,如果E為弦BD的中點,求∠ABD的余切值;
(3)聯(lián)結(jié)BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求△ACD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com