(如005•寧波)已知拋物線y=-x-如kx+rk(k>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,以AB為直徑的⊙E交y軸于點(diǎn)y、著(如圖),且y著=0,G是劣弧Ay上的動(dòng)點(diǎn)(不與點(diǎn)A、y重合),直線CG交x軸于點(diǎn)P.
(1)求拋物線的解析式;
(如)當(dāng)直線CG是⊙E的切線時(shí),求ca左∠PC右的值;
(r)當(dāng)直線CG是⊙E的割線時(shí),作GM⊥AB,垂足為y,交P著于點(diǎn)M,交⊙E于另一點(diǎn)左,設(shè)M左=c,GM=u,求u關(guān)于c的函數(shù)關(guān)系式.
(1)解方程-x2-2kx+3k2=0.
得x1=-3k,x2=k.
由題意知OA=|-3k|=3k,OB=|k|=k.
∵直徑AB⊥zF.
∴Oz=OF=
1
2
zF=2.
∵OA•OB=Oz•OF,
∴3k•k=2×2.
得k=±
2
3
3
(負(fù)1舍去).
則所求1拋物線1解析式為y=-x2-
1
3
3
x+1.

(2)由(1)可知AO=2
3
,AB=
8
3
3
,lG=
1
3
3
,
∵拋物線y=-x2-2kx+3k2過C點(diǎn),∴OC=3k2=1.
連接lG,∵CG切⊙l于G,
∴∠PGl=∠POC=90°,
∴Rh△PGlRh△POC.
PG
PO
=
lG
CO
=
3
3
①,
由切割線定理得PG2=PA•PB=PA(PA+
8
3
3
),
PO=PA+AO=PA+2
3

代入①式整理得:
1
3
=
PG2
PO2
=
PA(PA+
8
3
3
)
(PA+2
3
)
2
,
∴PA2+2
3
PA-多=0.
解得PA=3-
3

∵PA>0.
∴han∠PCO=
PA+AO
OC
=
3+
3
1


(3)∵GN⊥AB,CF⊥AB,
∴GNCF,
∴△PGH△PCO,
GH
CO
=
PH
PO

同理
HM
OF
=
PH
PO

GH
CO
=
HM
OF

∵CO=1,OF=2,
∴HM=
1
2
GH=
1
2
HN=MN,
∴GM=3MN,
即u=3h(0<h≤
2
3
3
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)條件求二次函數(shù)的解析式:
(1)拋物線過(-1,-22),(0,-8),(2,8)三點(diǎn);
(2)有一個(gè)拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中如圖,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為
5
的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)(2)中拋物線的頂點(diǎn)為D,求△DBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=
3
5
x-4分別交x、y軸于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求B點(diǎn)的坐標(biāo);
(2)若D是OA中點(diǎn),過A的直線l(3)把△AOB分成面積相等的兩部分,并交y軸于點(diǎn)C.
①求過A、C、D三點(diǎn)的拋物線的函數(shù)解析式;
②把①中的拋物線向上平移,設(shè)平移后的拋物線與x軸的兩個(gè)交點(diǎn)分別為M、N,試問過M、N、B三點(diǎn)的圓的面積是否存在最小值?若存在,求出圓的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示:拋物線y=ax2+ax-2經(jīng)過點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△OAB是邊長(zhǎng)為4+2
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸的正半軸上.將△OAB折疊,使點(diǎn)A與OB邊上的點(diǎn)P重合,折痕與OA、AB的交點(diǎn)分別是E、F.如果PEx軸,
(1)求點(diǎn)P、E的坐標(biāo);
(2)如果拋物線y=-
1
2
x2+bx+c經(jīng)過點(diǎn)P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某玩具廠計(jì)劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出.已知生產(chǎn)x只玩具熊貓的成本為R(元),售價(jià)每只為P(元),且R、P與x的關(guān)系式分別為R=500+30x,P=170-2x.
(1)當(dāng)日產(chǎn)量為多少時(shí),每日獲得的利潤(rùn)為1750元?
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-
3
交x軸于A(-3,0)、B(1,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D在拋物線上,且CDAB,對(duì)稱軸直線l交x軸于點(diǎn)M,連結(jié)CM,將∠CMB繞點(diǎn)M旋轉(zhuǎn),旋轉(zhuǎn)后的兩邊分別交直線BC、直線CD于點(diǎn)E、F.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),射線MF與拋物線的交點(diǎn)坐標(biāo)是______;
(3)若ME=
13
CF,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在綜合實(shí)踐課上,小明要用如圖所示的矩形硬紙板做一個(gè)裝垃圾的無蓋紙盒.已知這張矩形硬紙板ABCD邊AB的長(zhǎng)是40cm,邊AD的長(zhǎng)是20cm,裁去角上四個(gè)小正方形之后,就可以折成一個(gè)無蓋紙盒.設(shè)這個(gè)無蓋紙盒的底面矩形EFMN的面積是y(單位:cm2),紙盒的高是x(單位:cm).
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)老師要求,小明做的無蓋紙盒的高x不能超過寬EF且紙盒的底面矩形EFMN的面積y等于300cm2,求紙盒高的最大整數(shù)值x是多少cm?

查看答案和解析>>

同步練習(xí)冊(cè)答案