【題目】請在下列橫線上注明理由.
如圖,在中,點,,在邊上,點在線段上,若,,點到和的距離相等.求證:點到和的距離相等.
證明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵點到和的距離相等(已知),
∴是的角平分線(______),
∴(角平分線的定義),
∴(______),
即平分(角平分線的定義),
∴點到和的距離相等(______).
【答案】同位角相等,兩直線平行;兩直線平行,同位角相等;兩直線平行,同位角相等;角的內(nèi)部到角的兩邊距離相等的點在角的平分線上;等量代換;角平分線上的點到角的兩邊的距離相等.
【解析】
根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)與判定即可解答.
證明:∵∠PFD=∠C(已知),
∴PF∥AC(同位角相等,兩直線平行),
∴∠DPF=∠DAC(兩直線平行,同位角相等).
∵PE∥AB(已知),
∴ ∠EPD=∠BAD(兩直線平行,同位角相等).
∵點 D到PE和PF的距離相等(已知),
∴ PD是 ∠EPF的角平分線(角的內(nèi)部到角的兩邊距離相等的點在角的平分線上),
∴ ∠EPD=∠FPD(角平分線的定義),
∴∠BAD=∠DAC (等量代換),
即AD平分∠BAC (角平分線的定義),
∴點D到AB和AC的距離相等(角平分線上的點到角的兩邊的距離相等)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若,求證:A為EH的中點.
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB,CD的延長線分別交于點E,F.
(1)求證:△BOE≌△DOF;
(2)當(dāng)EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展課外球類特色的體育活動,決定開設(shè)A:羽毛球、B:籃球、C:乒乓球、 D:足球四種球類項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種),隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡A項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是 度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學(xué)生3000人,請根據(jù)樣本估計全校最喜歡足球的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了處理污水需要鋪設(shè)一條長為2000米的管道,實際施工時,×××××××,設(shè)原計劃每天鋪設(shè)管道米,則可列方程,根據(jù)此情景,題目中的“×××××××”表示所丟失的條件,這一條件為( )
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期10天完成任務(wù)
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期10天完成任務(wù)
C.每天比原計劃少鋪設(shè)10米,結(jié)果提前10天完成任務(wù)
D.每天比原計劃多鋪設(shè)10米,結(jié)果提前10天完成任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,;
當(dāng)正方形繞旋轉(zhuǎn)到如圖的位置時,是否成立?若成立,請給出證明;若不成立,請說明理由;
當(dāng)正方形繞旋轉(zhuǎn)到如圖的位置時,延長交于,交于.
①求證:;
②當(dāng),時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無論m取何值時,方程恒有實數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A(a,0)點B(b,0)為x軸上兩點,點C在Y軸的正半軸上,且a,b滿足等式a2+2ab+b2=0.
(1)判斷△ABC的形狀并說明理由;
(2)如圖2,M,N是OC上的點,且∠CAM=∠MAN=∠NAB,延長BN交AC于P,連接PM,判斷PM與AN的位置關(guān)系,并證明你的結(jié)論.
(3)如圖3,若點D為線段BC上的動點(不與B,C重合),過點D作DE⊥AB于E,點G為線段DE上一點,且∠BGE=∠ACB,F為AD的中點,連接CF,FG.求證:CF⊥FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點,且∠EAF=60°,請?zhí)骄繄D中線段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問題的方法是:延長FD到點G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進而可得線段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,且∠EAF=∠BAD.問(1)中的線段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com