(2011•恩施州)如圖,已知AB為⊙O的直徑,BD為⊙O的切線,過點B的弦BC⊥OD交⊙O于點C,垂足為M.
(1)求證:CD是⊙O的切線;
(2)當BC=BD,且BD=6cm時,求圖中陰影部分的面積(結(jié)果不取近似值)
(1)證明:連接OC

∵OD⊥BC,O為圓心,
∴OD平分BC.
∴DB=DC.
∴△OBD≌△OCD.(SSS)
∴∠OCD=∠OBD.
又∵AB為⊙O的直徑,BD為⊙O的切線,
∴∠OCD=∠OBD=90°,
∴CD是⊙O的切線;
(2)∵DB、DC為切線,B、C為切點,
∴DB=DC.
又DB=BC=6,
∴△BCD為等邊三角形.
∴∠BOC=360°﹣90°﹣90°﹣60°=120°,
∠OBM=90°﹣60°=30°,BM=3.
∴OM=,OB=2
∴S陰影部分=S扇形OBC﹣S△OBC
=
=(cm2).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·貴港)如圖所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中
點,⊙O與AC、BC分別相切于點D、E,點F是⊙O與AB的一個交點,連接DF并延長
交CB的延長線于點G,則BG的長是_  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•寧夏)已知⊙O1、⊙O2的半徑分別是r1=3、r2=5.若兩圓相切,則圓心距O1O2的值是(  )
A.2或4B.6或8
C.2或8D.4或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·孝感)如圖,某航天飛機在地球表面點的正上方處,從處觀測到地球上的最遠點,若∠=,地球半徑為R,則航天飛機距地球表面的最近距離AP,以及P、Q兩點間的地面距離分別是(  )  
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠CDB=30°,⊙O的半徑為cm,
則弦CD的長為   
A.cmB.3cm
C.cmD.9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·賀州)(本題滿分8分)
如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.
銳角∠DAB的平分線AC交⊙O于點C,作CD⊥AD,垂足為D,直線CD與AB的延長線
交于點E.
(1)求證:AC平分∠DAB;
(2)過點O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作
法);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖(5),△內(nèi)接于⊙,若=30°,,則⊙的直徑
        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·柳州)如圖,A、B、C三點在⊙O上,∠AOB=80º,則∠ACB的大小
A.40ºB.60ºC.80ºD.100º

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·臺州)如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為點M,AB=20,分
別以CM、DM為直徑作兩個大小不同的⊙O1和⊙O2,則圖中陰影部分的面積為       (結(jié)
果保留).

查看答案和解析>>

同步練習冊答案