如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為(     )

A.                 B.                C.                  D.

 

【答案】

B.

【解析】

試題分析:由點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),得到BE=CF=t,則CE=8-t,再根據(jù)正方形的性質(zhì)的OB=OC,∠OBC=∠OCD=45°,然后根據(jù)“SAS”可判斷△OBE≌△OCF,所以SOBE=SOCF,這樣S四邊形OECF=SOBC=16,于是S=S四邊形OECF-SCEF=16-(8-t)•t,然后配方得到S= (t-4)2+8(0≤t≤8),最后利用解析式和二次函數(shù)的性質(zhì)對(duì)各選項(xiàng)進(jìn)行判斷.

根據(jù)題意BE=CF=t,CE=8-t,

∵四邊形ABCD為正方形,

∴OB=OC,∠OBC=∠OCD=45°,

∵在△OBE和△OCF中

 ,

∴△OBE≌△OCF(SAS),

∴SOBE=SOCF,

∴S四邊形OECF=SOBC=×82=16,

∴S=S四邊形OECF-SCEF=16-(8-t)•t=t2-4t+16=(t-4)2+8(0≤t≤8),

∴s(cm2)與t(s)的函數(shù)圖象為拋物線一部分,頂點(diǎn)為(4,8),自變量為0≤t≤8.

故選B.

考點(diǎn):動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案