【題目】如圖,等邊ABC被一個(gè)平行于BC的矩形所截,AB被截成三等份.若BCa,則圖中陰影部分的面積是_____

【答案】

【解析】

先由等邊△ABC被一個(gè)平行于BC的矩形所截,AB被截成三等份,可得EHBC,那么△AEH∽△ABC,根據(jù)相似三角形面積比等于相似比的平方,得出SAEHSABC,那么S梯形EBCHSABC.再證明FG是梯形EBCH的中位線,EHBC2FG.進(jìn)而得到SEBGS梯形EBCH,從而求解即可.

解:等邊ABC被一個(gè)平行于BC的矩形所截,AB被截成三等份,

AEEFFBABBCa,EHBC,

∴△AEH∽△ABC,

,

SAEHSABC

S梯形EBCHSABCSAEHSABC

EHFGBC,EFFB,

FG是梯形EBCH的中位線,

EH+BC2FG

設(shè)EFG的邊FG上的高為h,則BFG的邊FG上的高為h,梯形EBCH的高為2h,

SEBGSEFG+SABFG

FGh+FGh

FGh,

S梯形EBCHEH+BC2h

2FG2h

2FGh,

SEBGS梯形EBCH×ABC×a2a2

故答案為a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到如圖所示的拋物線,該拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),,經(jīng)過點(diǎn)的一次函數(shù)的圖象與軸正半軸交于點(diǎn),且與拋物線的另一個(gè)交點(diǎn)為的面積為5

(1)求拋物線和一次函數(shù)的解析式;

(2)拋物線上的動(dòng)點(diǎn)在一次函數(shù)的圖象下方,求面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

(3)若點(diǎn)軸上任意一點(diǎn),在(2)的結(jié)論下,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如表:方程1、方程2、方程3是按一定規(guī)律排列的一列方程.

序號(hào)

方程

方程的解

1

x2+x2﹣=0

x1=﹣2

x21

2

x2+2x8﹣=0

x1=﹣4

x22

3

x2+3x180

x1   

x2   

1)解方程3,并將它的解填在表中的空白處;

2)請(qǐng)寫出這列方程中第10個(gè)方程,并用求根公式求其解.

3)根據(jù)表中的規(guī)律寫出第n個(gè)方程和這個(gè)方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD和正方形DEFG中,點(diǎn)GCD上,DE=2,將正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,得到正方形DEFG′,此時(shí)點(diǎn)G′在AC上,連接CE′,則CE′+CG′=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購(gòu)已經(jīng)成為一種時(shí)尚,某網(wǎng)絡(luò)購(gòu)物平臺(tái)“雙十一”全天交易額逐年增長(zhǎng),2016年交易額為500億元,2018年交易額為720億元。

(1)2016年至2018年“雙十一”交易額的年平均增長(zhǎng)率是多少?

(2)若保持原來的增長(zhǎng)率,試計(jì)算2019年該平臺(tái)“雙十一”的交易額將達(dá)到多少億元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長(zhǎng)為30m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃,設(shè)花圃的一邊ABxm,面積為ym2

1)求yx的函數(shù)關(guān)系式;

2)如果要圍成面積為48m2的花圃,AB的長(zhǎng)是多少?

3)能圍成比48m2更大的花圃嗎?如果能,請(qǐng)求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線與直線交于,兩點(diǎn),且點(diǎn)軸上,點(diǎn)軸的正半軸上.

1)直接寫出點(diǎn)的坐標(biāo);

2)若,求直線的解析式;

3)若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形紙片ABC中,∠ACB=90°AC≤BC,如圖,將紙片沿某條直線折疊,使點(diǎn)A落在直角邊BC上,記落點(diǎn)為D,設(shè)折痕與AB、AC邊分別交于點(diǎn)EF

1)如果∠AFE=65°,求∠CDF的度數(shù);

2)若折疊后的CDFBDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫出你的計(jì)算過程,并畫出符合條件的折疊后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌相機(jī),原售價(jià)每臺(tái)4000元,經(jīng)連續(xù)兩次降價(jià)后,現(xiàn)售價(jià)每臺(tái)3240元,已知兩次降價(jià)的百分率一樣。

1)求每次降價(jià)的百分率;

2)如果按這個(gè)百分率再降價(jià)一次,求第三次降價(jià)后的售價(jià)?

查看答案和解析>>

同步練習(xí)冊(cè)答案