分析 延長AB交x軸于C點(diǎn),作AF⊥x軸于F點(diǎn),BE⊥x軸于E點(diǎn),由于直線y=-x為第二、四象限的角平分線,則△AOB、△BEC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得AC=AO=$\sqrt{2}$AF,BC=$\sqrt{2}$BE=$\sqrt{2}$CE,AF=$\frac{1}{2}$OC,可得到AB=AC-BC=$\sqrt{2}$(AF-BE),利用OA2-AB2=12變形得2AF•BE-BE2=6,即BE(2AF-BE)=6,由于OC=2AF,BE=EC,所以BE•OE=6,則得到B點(diǎn)的橫縱坐標(biāo)之積為-6,從而得到k的值為-6.
解答 解:延長AB交x軸于C點(diǎn),作AF⊥x軸于F點(diǎn),BE⊥x軸于E點(diǎn),如圖,
∵點(diǎn)A為直線y=-x上一點(diǎn),
∴∠AOC=90°,
∵AB⊥直線y=-x,
∴△AOC、△BEC為等腰直角三角形,
∴AC=AO=$\sqrt{2}$AF,BC=$\sqrt{2}$BE=$\sqrt{2}$CE,AF=$\frac{1}{2}$OC,
∴AB=AC-BC=$\sqrt{2}$(AF-BE),
∵OA2-AB2=12,
∴($\sqrt{2}$AF)2-[$\sqrt{2}$(AF-BE)]2=12,
整理得2AF•BE-BE2=6,
∴BE(2AF-BE)=6,
∴BE(OC-CE)=6,即BE•OE=6,
設(shè)B點(diǎn)坐標(biāo)為(x,y),則BE=y,OE=-x,
∴BE•OE=-xy=6,
∴xy=-6,
∴k=-6.
故答案為-6.
點(diǎn)評(píng) 本題考查了反比例函數(shù)的綜合題:反比例函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式;熟練運(yùn)用等腰直角三角形的性質(zhì)解決幾何計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6cm | B. | 5cm | C. | $\frac{8}{3}$cm | D. | $\frac{3}{8}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 12 | D. | -12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{FG}{GD}=\frac{BF}{AF}$ | B. | $\frac{AE}{AC}=\frac{BF}{AF}$ | C. | $\frac{FG}{AE}=\frac{BF}{AF}$ | D. | $\frac{CE}{EA}=\frac{BF}{AF}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com