如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F。
(1)當△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結論;
(2)設平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關系式;并求出四邊形B2FD1E的面積的最大值;
(3)連結B1C(請在圖(3)中畫出)。當平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?
解:(1)四邊形B2FD1E是矩形。
因為△AB1D1平移到圖(3)的,所以四邊形B2FD1E是一個平行四邊形,又因為在平行四邊形ABCD中,AB=10,AD=6,BD=8,則有∠ADB是直角。所以四邊形B2FD1E是矩形。
(2)因為三角形B1B2F與三角形AB1D1相似,則有B2F==0.6x,B1F==0.8x,
所以=B2F×D1F=0.6x×(8-0.8x)=4.8x-0.48x2,即y=4.8x-0.48x2=12-0.48(x-5)2,
當x=5時,y=12是最大的值。
(3)要使△B1B2F與△B1CF相似,則有,解之得:x=3.6。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結論;
(2)設平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結論;
(2)設平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2008•遵義)如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結論;
(2)設平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2008•遵義)如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結論;
(2)設平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年貴州省遵義市中考數(shù)學試卷(解析版) 題型:解答題

(2008•遵義)如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結論;
(2)設平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

同步練習冊答案