如圖,∠A,∠DOE和∠BEC的大小關(guān)系的

[  ]

A.∠A>∠DOE>∠BEC

B.∠DOE>∠A>∠BEC

C.∠BEC>∠DOE>∠A

D.∠DOE>∠BEC>∠A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,圓內(nèi)接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點(diǎn)F,OE⊥AC于點(diǎn)G,
求證:陰影部分四邊形OFCG的面積是△ABC的面積的
1
3

(2)如圖2,若∠DOE保持120°角度不變,
求證:當(dāng)∠DOE繞著O點(diǎn)旋轉(zhuǎn)時(shí),由兩條半徑和△ABC的兩條邊圍成的圖形(圖精英家教網(wǎng)中陰影部分)面積始終是△ABC的面積的
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在課堂上,郝老師將一個(gè)三角板的直角頂點(diǎn)與點(diǎn)C重合,它的兩條直角邊也分別與x軸正半軸、y軸正半軸相交于E點(diǎn)、D點(diǎn).當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到與x軸、y軸垂直時(shí),如圖1,已知射線(xiàn)OM為第一象限的角平分線(xiàn),C點(diǎn)的坐標(biāo)為(2,2)

(1)四邊形ODCE的面積是
4
4
;點(diǎn)D的坐標(biāo)為
(0,2)
(0,2)
;點(diǎn)E的坐標(biāo)為
(2,0)
(2,0)

(2)當(dāng)郝老師將三角板繞點(diǎn)C旋轉(zhuǎn)到與x軸、y軸不垂直時(shí),如圖2,姚小明同學(xué)馬上舉手回答說(shuō),在旋轉(zhuǎn)過(guò)程中,四邊形ODCE的面積始終保持不變,其值為定值.老師說(shuō)他的回答是正確的!請(qǐng)你說(shuō)明其中的道理.
(3)最后,郝老師過(guò)D、O、E三點(diǎn)畫(huà)⊙O1,如圖3,設(shè)△DOE的內(nèi)切圓的直徑為d,并用肯定的語(yǔ)氣說(shuō),不論⊙O1的大小、位置如何變化,d+DE的值永遠(yuǎn)不變.同學(xué)們,你們知道這里的奧妙嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三角板的直角頂點(diǎn)與點(diǎn)C重合,它的兩條直角邊也分別與x軸正半軸、y軸正半軸相交于E點(diǎn)、D點(diǎn).當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到與x軸、y軸垂直時(shí),如圖1,已知射線(xiàn)OM為第一象限的角平分線(xiàn),C點(diǎn)的坐標(biāo)為(2,2)
(1)四邊形ODCE的面積是
4
4
;點(diǎn)D的坐標(biāo)為
(0,2)
(0,2)
;點(diǎn)E的坐標(biāo)為
(2,0)
(2,0)

(2)將三角板繞點(diǎn)C旋轉(zhuǎn)到與x軸、y軸不垂直時(shí),如圖2,在旋轉(zhuǎn)過(guò)程中,四邊形ODCE的面積始終保持不變,其值為定值.請(qǐng)你說(shuō)明其中的道理.
(3)經(jīng)過(guò)D、O、E三點(diǎn)畫(huà)⊙O1,如圖3,設(shè)△DOE的內(nèi)切圓的直徑為d,請(qǐng)證明:不論⊙O1的大小、位置如何變化,d+DE的值不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠A、∠DOE和∠BEC的大小關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC與△DOE是位似圖形,A(0,3),B(-2,0),C(1,0),E(6,0),△ABC與△DOE的位似中心為M.
(1)寫(xiě)出D點(diǎn)的坐標(biāo);
(2)在圖中畫(huà)出M點(diǎn),并求M點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案