如圖, 在長方形ABCD中,AB=3厘米.在CD邊上找一點E,沿直線AE把△ABE折疊,若點D恰好落在BC邊上點F處,且△ABF的面積是6平方厘米,則DE的長為( 。
A.2cmB.3cmC.2.5cmD.cm
D

試題分析:∵△ABF的面積是6cm2,AB=3cm,
∴BF=4cm.
在直角三角形ABF中,根據(jù)勾股定理,得
AF=5.根據(jù)折疊的性質(zhì),得AD=AF=5.
∵四邊形ABCD是長方形,
∴BC=AD=5,
∴CF=5-4=1.
設(shè)DE=x,則EF=DE=x,CE=3-x,
在直角三角形EFC中,根據(jù)勾股定理,得
1+(3-x)2=x2,
解,得x=
即DE=
故選D
點評:此題綜合運(yùn)用了矩形的性質(zhì)、勾股定理以及折疊的性質(zhì),善于運(yùn)用勾股定理構(gòu)造方程求解
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系O中,矩形OABC的邊OA在軸的正半軸上,OC在軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.

(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉(zhuǎn)后,角的一邊與軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內(nèi)的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,DE平分∠ADC交BC于點E,EF⊥AD交AD于點F,若EF=3,AE=5,則AD=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把一個長方形紙片沿折疊后,點DC分別落在D′,C′的位置.若=70°,則= _________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

【問題】如圖,在正方形ABCD內(nèi)有一點P,PA=,PB=,PC=1,求∠BPC的度數(shù).
分析根據(jù)已知條件比較分散的特點,我們可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點B逆時針旋轉(zhuǎn)90°,得到了△BP′A(如圖),然后連結(jié)PP′.
解決問題請你通過計算求出圖17-2中∠BPC的度數(shù);
【類比研究】如圖,若在正六邊形ABCDEF內(nèi)有一點P,且PA=,PB=4,PC=2.
(1)∠BPC的度數(shù)為       ;(2)直接寫出正六邊形ABCDEF的邊長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,O1、O2、O3分別是對角線BD上的三點,且BO1=O1O2=O2O3=O3D,連接AO1并延長交BC于點E,連接EO3并延長交AD于點F,則AD:DF等于(     )
A.19:2B.9:1C.8:1D.7:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩形ABCD的周長為12,E、F、G、H為矩形ABCD的各邊中點,若AB=x,四邊形EFGH的面積為y.

(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計算當(dāng)x為何值時,y最大,并求出最大值.
(參考公式:當(dāng)x=-時,二次函數(shù)y=ax+bx+c(a≠o)有最小(大)值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為100° 的菱形,剪口與折痕所成的角的度數(shù)應(yīng)為( 。
A.25°或50°B.20°或50°C.40°或50°D.40°或80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列四邊形中,對角線不互相平分的是(    ).
A.平行四邊形B.菱形C.正方形D.等腰梯形

查看答案和解析>>

同步練習(xí)冊答案