【題目】.如圖①,ABC中,沿BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿B1A1C的平分線A1B2折疊,剪掉重疊部分;……將余下部分沿BnAnCn為正整數(shù))的平分線AnBn1折疊,點(diǎn)Bn與點(diǎn)C重合.無(wú)論折疊多少次,只要最后一次點(diǎn)Bn與點(diǎn)C恰好重合,我們就稱BACABC的好角.

小麗展示了確定BACABC的好角的兩種情形.

情形一:如圖②,沿等腰三角形ABC頂角BAC是平分線AB1折疊,點(diǎn)B與點(diǎn)C重合;

情形二:如圖③,沿ABCBAC的平分線AB1折疊,剪掉重疊部分;將余下的部分沿B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合.

(探究發(fā)現(xiàn))

⑴如圖③,ABC中,B2C,經(jīng)過(guò)兩次折疊,BAC是不是ABC的好角? .(填:不是

⑵歸納猜想:(i)如圖④,小麗經(jīng)過(guò)三次折疊發(fā)現(xiàn)了BACABC的好角,請(qǐng)?zhí)骄?/span>BCBC)之間的等量關(guān)系,并說(shuō)明理由.

ii)根據(jù)以上內(nèi)容猜想:若經(jīng)過(guò)nn為正整數(shù))次折疊BACABC的好角,則BCBC)之間的等量關(guān)系為 .(直接寫(xiě)出結(jié)論)

⑶小麗找到一個(gè)三角形,三個(gè)角分別為15,60,105,發(fā)現(xiàn)60105的兩個(gè)角都是此三角形的好角,請(qǐng)你完成,如果一個(gè)三角形的最小角是10,試求出三角形另外兩個(gè)角的度數(shù),使該三角形的三個(gè)角均是此三角形的好角.

【答案】1)是;

2∠B=3∠C;∠B=n∠C

360°105°;

(410°,160°

【解析】

1)仔細(xì)分析題意根據(jù)折疊的性質(zhì)及“好角”的定義即可作出判斷;
2)因?yàn)榻?jīng)過(guò)三次折疊∠BAC是△ABC的好角,所以第三次折疊的∠A2B2C=C,由∠ABB1=AA1B1,∠AA1B1=A1B1C+C,又∠A1B1C=A1A2B2,∠A1A2B2=A2B2C+C,∠ABB1=A1B1C+C=A2B2C+C+C=3C,由此即可求得結(jié)果;
3)根據(jù)好角的定義即可得出結(jié)果;
4)根據(jù)好角的定義進(jìn)行推理計(jì)算,即可得出結(jié)果.

解:(1)△ABC中,∠B=2C,經(jīng)過(guò)兩次折疊,∠BAC是△ABC的好角;
理由如下:小麗展示的情形二中,
∵沿∠BAC的平分線AB1折疊,
∴∠B=AA1B1
又∵將余下部分沿∠B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合,
∴∠A1B1C=C;
∵∠AA1B1=C+A1B1C(外角定理),
∴∠B=2C
故答案為:是;
2)∠B=3C;
在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分,將余下部分沿∠B2A2C的平分線A2B3折疊,點(diǎn)B2與點(diǎn)C重合,則∠BAC是△ABC的好角.
理由如下:∵根據(jù)折疊的性質(zhì)知,∠B=AA1B1,∠C=A2B2C,∠A1B1C=A1A2B2,
∴根據(jù)三角形的外角定理知,∠A1A2B2=C+A2B2C=2C;
∵根據(jù)四邊形的外角定理知,∠BAC+B+AA1B1-A1B1C=BAC+2B-2C=180°,
根據(jù)三角形ABC的內(nèi)角和定理知,∠BAC+B+C=180°,
∴∠B=3C;
由小麗展示的情形一知,當(dāng)∠B=C時(shí),∠BAC是△ABC的好角;
由小麗展示的情形二知,當(dāng)∠B=2C時(shí),∠BAC是△ABC的好角;
由小麗展示的情形三知,當(dāng)∠B=3C時(shí),∠BAC是△ABC的好角;
故若經(jīng)過(guò)n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為∠B=nC;
故答案為:∠B=3C;∠B=nC
3)由前邊可以知道∠B和∠C有倍數(shù)關(guān)系,∠A是好角
所以60°=4×15°,6015有倍數(shù)關(guān)系,105°應(yīng)該是好角
105°=7×15°,10515有倍數(shù)關(guān)系,60°應(yīng)該是好角
故答案為:60°,105°;
410°,160°;由(2)知,∠B=nC,∠BAC是△ABC的好角,
因?yàn)樽钚〗鞘?/span>10°是△ABC的好角,
根據(jù)好角定義,則可設(shè)另兩角分別為10m°,10mn°(其中m、n都是正整數(shù)).
由題意,得10m+10mn+10=180,所以mn+1=17
因?yàn)?/span>m、n都是正整數(shù),所以mn+117的整數(shù)因子,
因此有:m=1,n+1=17
所以m=1,n=16;
所以10m=10°,10mn=160°;
所以該三角形的另外兩個(gè)角的度數(shù)分別為:10°,160°;
故答案為:10°,160°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,那么稱這個(gè)正整數(shù)為奇特?cái)?shù).例如:,,;則816、24這三個(gè)數(shù)都是奇特?cái)?shù).

1)填空:32___________奇特?cái)?shù),2018_________奇特?cái)?shù).(填是”或者“不是”)

2)設(shè)兩個(gè)連續(xù)奇數(shù)是(其中取正整數(shù)),由這兩個(gè)連續(xù)奇數(shù)構(gòu)造的奇特?cái)?shù)是8的倍數(shù)嗎?為什么?

3)如圖所示,拼疊的正方形邊長(zhǎng)是從1開(kāi)始的連續(xù)奇數(shù),按此規(guī)律拼疊到正方形,其邊長(zhǎng)為403,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤(pán)行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.

1)這次被調(diào)查的同學(xué)共有   人;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);

3)校學(xué)生會(huì)通過(guò)數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育場(chǎng)看臺(tái)的坡面AB與地面的夾角是37°,看臺(tái)最高點(diǎn)B到地面的垂直距離BC2.4米,看臺(tái)正前方有一垂直于地面的旗桿DE,在B點(diǎn)用測(cè)角儀測(cè)得旗桿的最高點(diǎn)E的仰角為33°,已知測(cè)角儀BF的高度為1.2米,看臺(tái)最低點(diǎn)A與旗桿底端D之間的距離為15米(C,A,D在同一條直線上).

1)求看臺(tái)最低點(diǎn)A到最高點(diǎn)B的坡面距離AB;

2)一面紅旗掛在旗桿上,固定紅旗的上下兩個(gè)掛鉤G、H之間的距離為1.2米,下端掛鉤H與地面的距離為1米,要求用30秒的時(shí)間將紅旗升到旗桿的頂端,求紅旗升起的平均速度(計(jì)算結(jié)果保留兩位小數(shù))(sin37°≈0.6cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC面積為1,第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,CB1=CB,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1B1C1,C1A1至點(diǎn)A2B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過(guò)100,最少經(jīng)過(guò)( �。┐尾僮鳎�

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.

(1)按要求作圖:

①畫(huà)出ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形A1B1C1;

②畫(huà)出將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AB2C2

(2)回答下列問(wèn)題:

①△A1B1C1中頂點(diǎn)A1坐標(biāo)為 ;②若P(a,b)為ABC邊上一點(diǎn),則按照(1)中①作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P1的坐標(biāo)為

【答案】(1)作圖見(jiàn)解析;(2)(1,-2)(-a,-b)

【解析】試題分析:(1)首先找出對(duì)應(yīng)點(diǎn)的位置,再順次連接即可;

2根據(jù)圖形可直接寫(xiě)出坐標(biāo);根據(jù)關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn)可得答案.

試題解析:(1)如圖所示:

2根據(jù)圖形可得A1坐標(biāo)為(2,﹣4);

點(diǎn)P1的坐標(biāo)為(﹣a,﹣b).

故答案為:(﹣2﹣4);(﹣a,﹣b).

考點(diǎn):作圖-旋轉(zhuǎn)變換.

型】填空
結(jié)束】
23

【題目】在學(xué)習(xí)了普查與抽樣調(diào)查之后,某校八(1)班數(shù)學(xué)興趣小組對(duì)該校學(xué)生的視力情況進(jìn)行了抽樣調(diào)查,并畫(huà)出了如圖所示的條形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解決下列問(wèn)題:

(1)本次抽查活動(dòng)中共抽查了  名學(xué)生;

(2)已知該校七年級(jí)、八年級(jí)、九年級(jí)學(xué)生數(shù)分別為360人、400人、540人.

①試估算:該校九年級(jí)視力不低于4.8的學(xué)生約有  名;

②請(qǐng)你幫忙估算出該校視力低于4.8的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018512日是我國(guó)第十個(gè)全國(guó)防災(zāi)減災(zāi)日,也是汶川地震十周年.為了弘揚(yáng)防災(zāi)減災(zāi)文化,普及防災(zāi)減災(zāi)知識(shí)和技能,鄭州W中學(xué)通過(guò)學(xué)校安全教育平臺(tái)號(hào)召全校學(xué)生進(jìn)行學(xué)習(xí),并對(duì)學(xué)生學(xué)習(xí)成果進(jìn)行了隨機(jī)抽取,現(xiàn)對(duì)部分學(xué)生成績(jī)(x為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì).繪制了如圖尚不完整的統(tǒng)計(jì)圖表:

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分?jǐn)?shù)段

頻數(shù)

A

50≤x<60

a

B

60≤x<70

80

C

70≤x<80

100

D

80≤x<90

150

E

90≤x<100

120

合計(jì)

b

根據(jù)以上信息解答下列問(wèn)題:

(1)填空:a=   ,b=   ;

(2)扇形統(tǒng)計(jì)圖中,m的值為   ,“D”所對(duì)應(yīng)的圓心角的度數(shù)是   度;

(3)本次調(diào)查測(cè)試成績(jī)的中位數(shù)落在   組內(nèi);

(4)若參加學(xué)習(xí)的同學(xué)共有2000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>90分及以上的同學(xué)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型超市從生產(chǎn)基地購(gòu)進(jìn)一批水果,運(yùn)輸過(guò)程中質(zhì)量損失10%,假設(shè)超市購(gòu)進(jìn)這批水果的總量為m千克,每千克進(jìn)價(jià)為n元(不計(jì)超市其它費(fèi)用).

1)如果超市在進(jìn)價(jià)的基礎(chǔ)上提高10%作為售價(jià),此時(shí):

①超市最終的銷售額為_________元(用含m、n的代數(shù)式表示);

②在這一次銷售中,超市_______(填:盈利或虧本).

2)如果超市至少要獲得17%的利潤(rùn),請(qǐng)通過(guò)計(jì)算說(shuō)明這種水果的售價(jià)最低應(yīng)提高百分之幾?

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘