A. | 20° | B. | 30° | C. | 35° | D. | 40° |
分析 由已知AC是∠DAE的平分線(xiàn)可推出∠EAC=∠DAC,由DA∥CE可推出∠ECA=∠DAC,所以得到∠EAC=∠ECA,則AE=CE,又已知∠AEB=∠CEB,BE=BE,因此△AEB≌△CEB,問(wèn)題得解.
解答 解:∵AC是∠DAE的平分線(xiàn),
∴∠DAC=∠CAE=α.
又∵DA∥EC,
∴∠DAC=∠ACE=α,
∴∠CAE=∠ACE=α,
∴AE=CE,∠AEC=180°-2α,
在△AEB和△CEB中,
$\left\{\begin{array}{l}{AE=CE}\\{AB=CB}\\{EB=EB}\end{array}\right.$,
∴△AEB≌△CEB(SSS),
∴∠AEB=∠CEB=110°,
∴∠AEC=360°-220°=140°,即180°-2α=140°.
解得α=20°.
故選A.
點(diǎn)評(píng) 此題考查的知識(shí)點(diǎn)是平行線(xiàn)的性質(zhì)、全等三角形的判定和性質(zhì),解答此題的關(guān)鍵是由已知先證明∠EAC=∠ECA,AE=CE,再證明△AEB≌△CEB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5或6或7 | B. | 6或7 | C. | 7或8 | D. | 6或7或8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com