【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:△AOD ≌ △EOC;
(2)連接AC,DE,當(dāng)∠B∠AEB _______ °時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2)當(dāng)∠B=∠AEB=45°時(shí),四邊形ACED是正方形
【解析】試題分析:(1)根據(jù)平行線(xiàn)的性質(zhì)可得∠D=∠OCE,∠DAO=∠E,再根據(jù)中點(diǎn)定義可得DO=CO,然后可利用AAS證明△AOD≌△EOC;
(2)當(dāng)∠B=∠AEB=45°時(shí),四邊形ACED是正方形,首先證明四邊形ACED是平行四邊形,再證對(duì)角線(xiàn)互相垂直且相等可得四邊形ACED是正方形.
試題解析:證明:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中點(diǎn),∴OC=OD.在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);
(2)當(dāng)∠B=∠AEB=45°時(shí),四邊形ACED是正方形.
∵△AOD≌△EOC,∴OA=OE.
又∵OC=OD,∴四邊形ACED是平行四邊形.
∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.
∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∴∠COE=∠BAE=90°,∴ACED是菱形.∵AB=AE,AB=CD,∴AE=CD,∴菱形ACED是正方形.
故答案為:45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在橫線(xiàn)上填寫(xiě)理由,完成下面的證明. 如圖,已知∠1+∠2=180°,∠B=∠3,求證∠C=∠AED
證明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°()
∴∠2=∠DFE()
∴AB∥EF()
∴∠3=∠ADE()
又∵∠B=∠3(已知)
∴∠B=∠ADE()
∴DE∥BC()
∴∠C=∠AED()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=12,弦AC=10,D是 的中點(diǎn),過(guò)點(diǎn)D作DE⊥AC,交AC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶(hù)設(shè)計(jì)如圖所示.圓O的圓心與矩形ABCD對(duì)角線(xiàn)的交點(diǎn)重合,且圓與矩形上下兩邊相切(E為上切點(diǎn)),與左右兩邊相交(F,G為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,根據(jù)設(shè)計(jì)要求,若∠EOF=45°,則此窗戶(hù)的透光率(透光區(qū)域與矩形窗面的面積的比值)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在平時(shí)的練習(xí)中,遇到下面一道題目:
如圖,∠AOC=90°,OE 平分∠BOC,OD平分∠AOB.
①若∠BOC=60°,求∠DOE 度數(shù);
②若∠BOC=α(0<α<90°),其他條件不變,求∠DOE 的度數(shù).
(1)下面是某同學(xué)對(duì)①問(wèn)的部分解答過(guò)程,請(qǐng)你補(bǔ)充完整.
∵OE 平分∠BOC,∠BOC=60°
∴∠BOE= . (角平分線(xiàn)的定義)
∵∠AOC=90°,∠BOC=60°
∴ ,
∵OD 平分∠AOB,
∴ ,(角平分線(xiàn)的定義)
∴∠DOE= .
(注:符號(hào)∵表示因?yàn),用符?hào)∴表示所以).
(2)仿照①的解答過(guò)程,完成第②小題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
(1)在同一平面內(nèi),不相交的兩條直線(xiàn)一定平行.(2)在同一平面內(nèi),不相交的兩條線(xiàn)段一定平行.(3)相等的角是對(duì)頂角.(4)兩條直線(xiàn)被第三條直線(xiàn)所截,同位角相等.(5)兩條平行線(xiàn)被第三條直線(xiàn)所截,一對(duì)內(nèi)錯(cuò)角的角平分線(xiàn)互相平行.其中,正確說(shuō)法的個(gè)數(shù)是( )
A. 1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,AD是△ABC的角平分線(xiàn),DE⊥AB,垂足為點(diǎn)E,AE=BE.
(1)求∠B的度數(shù);
(2)如果AC=3cm,CD=cm,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為地鐵調(diào)價(jià)后的計(jì)價(jià)表.調(diào)價(jià)后小明、小偉從家到學(xué)校乘地鐵分別需要4元和3元.由于刷卡坐地鐵有優(yōu)惠,因此,他們平均每次實(shí)付3.6元和2.9元.已知小明從家到學(xué)校乘地鐵的里程比小偉從家到學(xué)校的里程多5 km,且小明每千米享受的優(yōu)惠金額是小偉的2倍,求小明和小偉從家到學(xué)校乘地鐵的里程分別是多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是一張放在平面直角坐標(biāo)系中的長(zhǎng)方形紙片,為原點(diǎn),點(diǎn)在軸的正半軸上,點(diǎn)在軸的正半軸上,,.在邊上取一點(diǎn),將紙片沿翻折,使點(diǎn)落在邊上的點(diǎn)處.
(1)求和的長(zhǎng);
(2)求直線(xiàn)的表達(dá)式;
(3)直線(xiàn)與平行,當(dāng)它與矩形有公共點(diǎn)時(shí),直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com