【題目】P為等邊△ABC的邊AB上一點,QBC延長線上一點,且PACQ,連PQAC邊于D

1)證明:PDDQ

2)如圖2,過PPEACE,若AB6,求DE的長.

【答案】1)證明見解析;(2DE3

【解析】

1)過點PPFBCAC于點F;證出△APF也是等邊三角形,得出AP=PF=AF=CQ,由AAS證明△PDF≌△QDC,得出對應邊相等即可;

2)過PPFBCACF.同(1)由AAS證明△PFD≌△QCD,得出對應邊相等FD=CD,證出AE+CD=DEAC,即可得出結果.

1)如圖1所示,點PPFBCAC于點F

∵△ABC是等邊三角形,∴△APF也是等邊三角形,AP=PF=AF=CQ

PFBC,∴∠PFD=DCQ

在△PDF和△QDC中,,∴△PDF≌△QDCAAS),∴PD=DQ;

2)如圖2所示,過PPFBCACF

PFBC,△ABC是等邊三角形,∴∠PFD=QCD,△APF是等邊三角形,∴AP=PF=AF

PEAC,∴AE=EF

AP=PF,AP=CQ,∴PF=CQ

在△PFD和△QCD中,,∴△PFD≌△QCDAAS),∴FD=CD

AE=EF,∴EF+FD=AE+CD,∴AE+CD=DEAC

AC=6,∴DE=3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點P為射線OC上一點,OP=4,點M、N分別為OA、OB邊上動點,則△MNP周長的最小值為( )

A. 2 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達終點后停止,設甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),st之間的函數(shù)關系如圖所示,有下列結論:

①出發(fā)1小時時,甲、乙在途中相遇;

②出發(fā)1.5小時時,乙比甲多行駛了60千米;

③出發(fā)3小時時,甲、乙同時到達終點;

④甲的速度是乙速度的一半.

其中,正確結論的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】楊華與季紅用5張同樣規(guī)格的硬紙片做拼圖游戲,正面如圖1所示,背面完全一樣,將它們背面朝上攪勻后,同時抽出兩張.規(guī)則如下:當兩張硬紙片上的圖形可拼成電燈或小人時,楊華得1分;當兩張硬紙片上的圖形可拼成房子或小山時,季紅得1分(如圖2).問題:游戲規(guī)則對雙方公平嗎?請說明理由;若你認為不公平,如何修改游戲規(guī)則才能使游戲對雙方公平?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)圖象經(jīng)過點A0,2),且與正比例函數(shù)y=﹣x的圖象交于點B,B點的橫坐標是﹣1

1)求該一次函數(shù)的解析式:

2)求一次函數(shù)圖象、正比例函數(shù)圖象與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1:y=x2+bx+c經(jīng)過原點,與x軸的另一個交點為(2,0),將拋物線C1向右平移m(m>0)個單位得到拋物線C2 , C2交x軸于A,B兩點(點A在點B的左邊),交y軸于點C.
(1)求拋物線C1的解析式及頂點坐標;
(2)以AC為斜邊向上作等腰直角三角形ACD,當點D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;
(3)若拋物線C2的對稱軸存在點P,使△ PAC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC在平面直角坐標系中,A(﹣2,5),B(﹣3,2),C(﹣1,1).

1)請畫出ABC關于y軸的對稱圖形ABC,其中A點的對應點是A,B點的對應點是B,C點的對應點是C,并寫出A,BC三點的坐標.

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AD是BC邊上的中線,點E在AC上,且∠CDE=20°,現(xiàn)將△CDE沿直線DE折疊得到△FDE,連結BF.∠BFE的度數(shù)是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:BD平分∠ABC,∠ABD=ADB,∠ABC=50°,請問:

1)∠BDC+∠C 的度數(shù)是多少?并說明理由.

2)若P點是BC上的一動點(B點除外),∠BDP與∠BPD之和是一個確定的值嗎?如果是,求出這個確定的值.如果不是,說明理由.

查看答案和解析>>

同步練習冊答案