【題目】已知a>b,則下列不等式一定成立的是( )
A. -a<-bB. a-1<b-1
C. a+2<b+2D. 2a<2b
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)四邊形的邊長依次為a,b,c,d,且滿足a2+b2+c2+d2=2ac+2bd,則這個(gè)四邊形為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
如圖,在直角坐標(biāo)平面內(nèi),已知點(diǎn)A(8,0),點(diǎn)B(3,0),點(diǎn)C是點(diǎn)A關(guān)于直線m(直線m上各點(diǎn)的橫坐標(biāo)都為3)的對(duì)稱點(diǎn).
(1)在圖中標(biāo)出點(diǎn)A,B,C的位置,并求出點(diǎn)C的坐標(biāo);
(2)如果點(diǎn)P在y軸上,過點(diǎn)P作直線l∥x軸,點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)是點(diǎn)D,那么當(dāng)△BCD的面積等于15時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中有一點(diǎn)A,其坐標(biāo)為A(3,2)回答下列問題:
(1)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)B的坐標(biāo)點(diǎn)為( )
點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)C的坐標(biāo)點(diǎn)為( )
(2)若在x軸上找一點(diǎn)D,使DA+DC之和最短,則點(diǎn)D的坐標(biāo)為( )
(3)若在x軸上找一點(diǎn)E,使△OAE為等腰三角形,則有____個(gè)這樣的E點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一種植物種子的質(zhì)量約為0.0000026千克,將數(shù)0.0000026用科學(xué)記數(shù)法表示為( 。
A. 2.6×10﹣6 B. 2.6×10﹣5 C. 26×10﹣8 D. 0.26x10﹣7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在等邊△ABC中,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是邊BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com