【題目】設(shè)一次函數(shù)y=ax+b(a,b是常數(shù),且a≠0)的圖象A(1,3)和B(-1,-1)兩點(diǎn).
(1)求該一次函數(shù)的表達(dá)式.
(2)①若點(diǎn)( ,2)在(1)中的函數(shù)圖象上,求m的值.
②若(1)中的函數(shù)圖象和y=-2x+n的函數(shù)圖象的交點(diǎn)在第一象限,求n的取值范圍.
【答案】(1)y=2x+1;(2)①m=3;②n>1.
【解析】
(1)已知一次函數(shù)圖像經(jīng)過(guò)兩點(diǎn),用待定系數(shù)法即可求解函數(shù)解析式;
(2) ①把點(diǎn)( ,2)代入一次函數(shù)的解析式,即可求出m的值;
②聯(lián)立兩個(gè)一次函數(shù)的解析式,求出交點(diǎn)坐標(biāo),再根據(jù)交點(diǎn)在第一象限得到不等式組,求解即可得到答案;
解:(1)∵一次函數(shù)y=ax+b的圖象A(1,3)和B(-1,-1)兩點(diǎn),
∴ ,
解得:,
∴一次函數(shù)的解析式為:y=2x+1;
(2) ①點(diǎn)( ,2)在y=2x+1的函數(shù)圖象上,
∴ ,
即:,
∴解得:m=3;
②∵聯(lián)立y=2x+1和y=-2x+n得到,
,
即:
解得: ,
把代入y=2x+1得到:
,
即: ,
∴交點(diǎn)坐標(biāo)為:,
又∵交點(diǎn)在第一象限,
∴ ,即
解得: ;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點(diǎn)B在點(diǎn)A的右側(cè),點(diǎn)C在第一象限.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)75°,如果點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在y軸的正半軸上,那么點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題發(fā)現(xiàn):(1)如圖1,在等腰直角三角形中,,點(diǎn)為的中點(diǎn),點(diǎn)為上一點(diǎn),將射線順時(shí)針旋轉(zhuǎn)交于點(diǎn),則與的數(shù)量關(guān)系為____;
問(wèn)題探究:(2)如圖2,在等腰三角形中,,點(diǎn)為的中點(diǎn),點(diǎn)為上一點(diǎn),將射線順時(shí)針旋轉(zhuǎn)交于點(diǎn),則與的數(shù)量關(guān)系是否改變,請(qǐng)說(shuō)明理由;
問(wèn)題解決:(3)如圖3,點(diǎn)為正方形對(duì)角線的交點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)為直線上一點(diǎn),將射線順時(shí)針旋轉(zhuǎn)交直線于點(diǎn),若,當(dāng)面積為時(shí),直接寫出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一組鄰邊相等且對(duì)角互補(bǔ)的四邊形叫做等補(bǔ)四邊形.
(問(wèn)題理解)
(1)如圖1,點(diǎn)A、B、C在⊙O上,∠ABC的平分線交⊙O于點(diǎn)D,連接AD、CD.
求證:四邊形ABCD是等補(bǔ)四邊形;
(拓展探究)
(2)如圖2,在等補(bǔ)四邊形ABCD中,AB=AD,連接AC,AC是否平分∠BCD?請(qǐng)說(shuō)明理由;
(升華運(yùn)用)
(3)如圖3,在等補(bǔ)四邊形ABCD中,AB=AD,其外角∠EAD的平分線交CD的延長(zhǎng)線于點(diǎn)F.若CD=6,DF=2,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)分別為10cm和4cm的矩形紙片沿著虛線剪成兩個(gè)全等的梯形紙片.裁剪線與矩形較長(zhǎng)邊所夾的銳角是45°,則梯形紙片中較短的底邊長(zhǎng)為( )
A.2cmB.2.5cmC.3cmD.3.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道求函數(shù)圖象的交點(diǎn)坐標(biāo),可以聯(lián)立兩個(gè)函數(shù)解析式組成方程組,方程組的解就是交點(diǎn)的坐標(biāo).如:求直線y=2x+3與y=﹣x+6的交點(diǎn)坐標(biāo),我們可以聯(lián)立兩個(gè)解析式得到方程組,解得,所以直線y=2x+3與y=﹣x+6的交點(diǎn)坐標(biāo)為(1,5).請(qǐng)利用上述知識(shí)解決下列問(wèn)題:
(1)已知直線y=kx﹣2和拋物線y=x2﹣2x+3,
①當(dāng)k=4時(shí),求直線與拋物線的交點(diǎn)坐標(biāo);
②當(dāng)k為何值時(shí),直線與拋物線只有一個(gè)交點(diǎn)?
(2)已知點(diǎn)A(a,0)是x軸上的動(dòng)點(diǎn),B(0,4),以AB為邊在AB右側(cè)做正方形ABCD,當(dāng)正方形ABCD的邊與反比例函數(shù)y=的圖象有4個(gè)交點(diǎn)時(shí),試求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,聰聰想在自己家的窗口A處測(cè)量對(duì)面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測(cè)得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點(diǎn)A,B,C,D在同一平面內(nèi).
(1)求AB與CD之間的距離(結(jié)果保留根號(hào)).
(2)求建筑物CD的高度(結(jié)果精確到1m).(參考數(shù)據(jù):,,,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com