精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙OBC于點D,交AC于點F,過點CCE∥AB,與過點A的切線相交于點E,連接AD.

(1)求證:AD=AE;

(2)若AB=6,AC=4,求AE的長.

【答案】(1)詳見解析;(2).

【解析】

(1)利用平行線的性質,圓的性質和等腰三角形的性質,證明AECADC全等即可證明AD=AE,

(2)設AE=AD=x,CE=CD=y,利用勾股定理列出關于xy的等式,即可求出AE的長.

1)證明:∵AE與⊙O相切,AB是⊙O的直徑,

∴∠BAE=90°,ADB=90°,

CEAB,

∴∠E=90°,

∴∠E=ADB,

∵在ABC中,AB=BC,

∴∠BAC=BCA,

∵∠BAC+EAC=90°,ACE+EAC=90°,

∴∠BAC=ACE,

∴∠BCA=ACE,

又∵AC=AC,

∴△ADC≌△AEC(AAS),

AD=AE;

(2)解:設AE=AD=x,CE=CD=y,

BD=(6﹣y),

∵△AECADB為直角三角形,

AE2+CE2=AC2,AD2+BD2=AB2

AB=6,AC=4,AE=AD=x,CE=CD=y,BD=(6﹣y)代入,

解得:x=,y=,

AE的長為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(閱讀材料)

因式分解:

解:將看成整體,令,則原式

再將還原,原式

上述解題用到的是整體思想,整體思想是數學解題中常用的一種思想方法.

(問題解決)

1)因式分解:;

2)因式分解:;

3)證明:若為正整數,則代數式的值一定是某個整數的平方.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CN是等邊△ABC的外角∠ACM內部的一條射線,點A關于CN的對稱點為D,連接AD,BDCD,其中ADBD分別交射線CN于點E,P.

()依題意補全圖形.

()若∠ACNα,求∠BDC的大小(用含α的式子表示).

()PAx,PCy,求PB的長度(xy的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°,EAC上(且不與點AC重合.在ABC的外部作等腰Rt△CED使CED=90°,連接AD分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉當點E在線段BC上時,連接AE,求證AF=AE;

3如圖3CED繞點C繼續(xù)逆時針旋轉當平行四邊形ABFD為菱形,CEDABC的下方時AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把圖中陰影部分的小正方形移動一個,使它與其余四個陰影部分的正方形組成一個既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是( 。

A. 6→3 B. 7→16 C. 7→8 D. 6→15

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于一次函數(k,b為常數),下表中給出5組自變量及其對應的函數值:

……

-1

0

1

2

3

……

-2

1

4

8

10

……

其中只有1個函數值計算有誤,則這個錯誤的函數值是( )

A.1B.4C.8D.10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,分別以RtABC的斜邊AB、直角邊AC為邊向外作等邊ABDACE,FAB中點,連接DF、EF,DE、EFAC交于點O,DEAB交于點G,連接OG,若∠BAC=30°,下列結論:①△DBF≌△EFA;AD=AE;EFAC;AD=4AG;⑤△AOGEOG的面積比為1:4.其中正確的結論的序號是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,完成下列推理過程:

如圖所示,點E在△ABC外部,點DBC邊上,DEACF,若∠1=∠3,∠E=∠C,AE=AC,求證:△ABC≌△ADE.

證明:∵ ∠E=∠C(已知),

∠AFE=∠DFC_________________,

∴∠2=∠3______________________,

又∵∠1=∠3_________________,

∴ ∠1=∠2(等量代換),

__________+∠DAC= __________+∠DAC______________________,

∠BAC =∠DAE,

△ABC和△ADE

∴△ABC≌△ADE_________________.

查看答案和解析>>

同步練習冊答案