如圖,AD∥BC,∠A=90°,以點B為圓心,BC長為半徑畫弧,交射線AD于點E,連接BE,過點C作CF⊥BE,垂足為F,求證:AB=FC.
先根據(jù)平行線的性質(zhì)證得∠AEB=∠EBC,再結(jié)合∠A=90°,CF⊥BE,BE=BC即可根據(jù)“AAS”證得△ABE≌△FCB,從而證得結(jié)論.

試題分析:∵AD∥BC,
∴∠AEB=∠EBC.
∵∠A=90°,CF⊥BE.
∴∠A=∠CFB=90°.
∵BE=BC,
∴△ABE≌△FCB(AAS).
∴AB=FC.
點評:全等三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,□ABCD中,E是AB中點,F(xiàn)在AD上,且AF=FD,EF交AC于G,則AG︰AC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,AE:EB=2:3,則△AEF和四邊形EBCF的面積比        。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將邊長為2的正方形紙片ABCD折疊,使點B 落在CD上,落點記為E(不與點C,D重合),點A落在點F處,折痕MN交AD于點M,交BC于點N.若,則BN的長是   ,的值等于     ;若,且為整數(shù)),則的值等于       (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖下列三個條件:①AB∥CD,②∠B=∠C.③∠E=∠F.從中任選兩個作為條件,另一個作為結(jié)論,編一道數(shù)學題,并說明理由。

已知:_______________________________
結(jié)論:_______________________________
理由:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(點P不與點A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE.且點G在矩形ABCD內(nèi)部.小明將BG延長交DC于點F,認為GF=DF,你同意嗎?請說明理由.

(2)問題解決保持(1)中的條件不變,若DF="4" , CD="9" ,求的值.
(3)類比探究保持(1)中的條件不變,若DC=2DF,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖所示的一張矩形紙片ABCD,(AD>AB),將紙片折疊一次,使點A與點C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,分別連結(jié)AF和CE,若AE="8cm," △ABF的面積為33 cm,則△ABF的周長等于(    )

A. 24cm       B. 22 cm    C.20cm      D .18cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

探究:如圖(1),在ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=900,連接AC,EF。在圖中找一個與△FAE全等的三角形,并加以證明。
應(yīng)用:以ABCD的四條邊為邊,在其形外分別作正方形,如圖(2),連接EF,GH,IJ,KL。若ABCD的面積為6,則圖中陰影部分四個三角形的面積和為____________.

推廣:以ABCD的四條邊為矩形長邊,在其形外分別作長與寬之比為矩形,如圖(3),連接EF,GH,IJ,KL。若圖中陰影部分四個三角形的面積和為12,求ABCD的面積?

查看答案和解析>>

同步練習冊答案