6.已知:如圖,平面直角坐標(biāo)系xOy中,正方形ABCD的邊長(zhǎng)為4,它的頂點(diǎn)A在x軸的正半軸上運(yùn)動(dòng)(點(diǎn)A,D都不與原點(diǎn)重合),頂點(diǎn)B,C都在第一象限,且對(duì)角線AC,BD相交于點(diǎn)P,連接OP.設(shè)點(diǎn)P到y(tǒng)軸的距離為d,則在點(diǎn)A,D運(yùn)動(dòng)的過程中,d的取值范圍是2<d≤2$\sqrt{2}$.

分析 根據(jù)垂線段最短,A、O重合時(shí),點(diǎn)P到y(tǒng)軸的距離最小,為正方形ABCD邊長(zhǎng)的一半,OA=OD時(shí)點(diǎn)P到y(tǒng)軸的距離最大,為PD的長(zhǎng)度,即可得解.

解答 解:當(dāng)A、O重合時(shí),點(diǎn)P到y(tǒng)軸的距離最小,
d=$\frac{1}{2}$×4=2,
當(dāng)OA=OD時(shí),點(diǎn)P到y(tǒng)軸的距離最大,d=PD=2$\sqrt{2}$,
∵點(diǎn)A,D都不與原點(diǎn)重合,
∴2<d≤2$\sqrt{2}$,
故答案為2<d≤2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的判定,(2)作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,(2)根據(jù)垂線段最短判斷出最小與最大值的情況是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知A為直線y=x上一點(diǎn),過A作BA⊥OA交雙曲線y=$\frac{k}{x}$于B,若OA2-AB2=8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.計(jì)算$\frac{1}{1+\root{4}{10}}+\frac{1}{1-\root{4}{10}}+\frac{2}{1+\sqrt{10}}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,矩形ABCD的邊AB在x軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB=2,AD=1,點(diǎn)Q的坐標(biāo)為(0,2).點(diǎn)P(x,0)在邊AB上運(yùn)動(dòng),若過點(diǎn)Q、P的直線將矩形ABCD的周長(zhǎng)分成2:1兩部分,則x的值為(  )
A.$\frac{1}{2}$或$-\frac{1}{2}$B.$\frac{1}{3}$或$-\frac{1}{3}$C.$\frac{3}{4}$或$-\frac{3}{4}$D.$\frac{2}{3}$或$-\frac{2}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F分別為邊AB、AD 的中點(diǎn),點(diǎn)G是CF上的一點(diǎn),使得3CG=2GF,則三角形BEG的面積為$\frac{4}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.前n(n>3)張卡片,在卡片上分別寫上-2、0、1中的任意一個(gè)數(shù),記為x1,x2,x3,…,xn,將卡片上的數(shù)先平方再求和,得x12+x22+x32+…+xn2=28,將卡片上的數(shù)先立方再求和,得x13+x23+x33+…+xn3=4,則x14+x24+x34+…+xn4的值是52.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,在邊長(zhǎng)為2的正方形ABCD的邊上有一個(gè)動(dòng)點(diǎn)P,從點(diǎn)A出發(fā)沿折線ABCD移動(dòng)一周后,回到A點(diǎn).設(shè)點(diǎn)A移動(dòng)的路程為x,△PAC的面積為y,求函數(shù)y的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.若∠α的余角為72°,則∠α的補(bǔ)角大小為162度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算:
(1)$\sqrt{4}$+(-2008)0-($\frac{1}{3}$)-1+|-2|
(2)(x-y+9)(x+y-9)

查看答案和解析>>

同步練習(xí)冊(cè)答案