在實數(shù)范圍內(nèi),二次根式有意義,則x的取值范圍是   
【答案】分析:根據(jù)被開方數(shù)大于等于0列式進行計算即可求解.
解答:解:根據(jù)題意得x-2≥0,
解得x≥2.
故答案為:x≥2.
點評:本題考查了二次根式有意義的條件,知識點為:二次根式的被開方數(shù)是非負(fù)數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一元二次方程2x2+bx+c=0的兩根為2、-1,那么二次三項式2x2+bx+c在實數(shù)范圍內(nèi)可以分解為( 。
A、(2x-2)(2x+2)B、(2x-2)(2x-1)C、2(x-2)(x-1)D、2(x-2)(x+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
若設(shè)關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,那么由根與系數(shù)的關(guān)系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三項式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)請用上面的方法將多項式4x2+8x-1分解因式.
(2)判斷二次三項式2x2-4x+7在實數(shù)范圍內(nèi)是否能利用上面的方法因式分解,并說明理由.
(3)如果關(guān)于x的二次三項式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下面的四個結(jié)論,回答問題.
①x2-3x+2=0的兩根為x1=1,x2=2;
②(x-1)(x-2)=0的兩根為x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三項式x2-3x+2可分解為(x-1)(x-2).
猜測
若關(guān)于x的方程x2+px+q=0的兩根為x1=3,x2=-4,則二次三項式x2+px+q可分解為
 

應(yīng)用在實數(shù)范圍內(nèi)分解因式:
(1)2x2-4x+2
(2)
1
3
x2-
2
3
x-1

(3)x2-2x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:將下列二次三項式在實數(shù)范圍內(nèi)分解因式:
(1)x2-5x+6;(2)x2-2x+1;(3)4x2+8x-1.
解:(1)令x2-5x+6=0,解得方程的兩根為x1=2,x2=3.則x2-5x+6=(x-2)(x-3)
(2)令x2-2x+1=0,解得方程的兩根為x1=x2=1,則x2-2x+1=(x-1)2
(3)令4x2+8x-1=0,解得方程的兩根為x1=
-2+
5
2
,x2=
-2-
5
2
,則4x2+8x-1=4(x-
-2-
5
2
)(x-
-2-
5
2
)=(2x+2-
5
)(2x+2+
5

參考以上解答下列問題:
在實數(shù)范圍內(nèi)因式分解:
①25x2+10x+1②4x2-8x+1
二次三項式2x2-3x+2在實數(shù)范圍內(nèi)能分解因式嗎?如果能,請你分解出來;如果不能分解,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案