分析 (1)根據(jù)已知條件可知BC=B′C′,AA′=BB′,AB=A′B′,AA′∥BB′,AB∥A′B′,得$\frac{A′E}{AB}=\frac{ED}{AD}=\frac{2}{3}$,$\frac{CE}{CA}=\frac{1}{3}$即可解答.
(2)根據(jù)$\frac{AD}{DC}=\frac{AA′}{BC′}$得$\frac{n-1}{2}=\frac{n}{n+1}$,解方程即可.
(3)分EC′=2DE或DE=2EC′兩種情形,通過比例式列出方程即可求出n.
解答 解:(1)如圖1中,連接AA′,
∵△A′B′C′是由△ABC平移,
∴BC=B′C′,AA′=BB′,AB=A′B′,AA′∥BB′,AB∥A′B′,
∵BB′=2BC=2B′C′,
∴$\frac{B′E}{AB}$=$\frac{C′B′}{C′B}$=$\frac{1}{3}$,$\frac{CE}{AE}=\frac{C′B′}{B′B}$=$\frac{1}{2}$,
∴$\frac{A′E}{AB}=\frac{DE}{AD}$=$\frac{2}{3}$,$\frac{EC′}{DE}$=$\frac{5}{4}$,
故答案分別為$\frac{2}{3}$,$\frac{5}{4}$.
(2)∵△A′B′C′是由△ABC平移,
∴BC=B′C′,AA′=BB′,AB=A′B′,AA′∥BB′,AB∥A′B′,BB′=nBC,
∴$\frac{EC}{AE}=\frac{C′B′}{BB′}$=$\frac{1}{n}$,
∵DE=EC,
∴$\frac{AD}{DC}=\frac{AA′}{BC′}$,
∴$\frac{n-1}{2}=\frac{n}{n+1}$,
∴n2-2n-1=0
∴n=1+$\sqrt{2}$或1-$\sqrt{2}$
∵n>0
∴n=1+$\sqrt{2}$.
(3)①當(dāng)EC′=2DE時(shí),
∵△A′B′C′是由△ABC平移,
∴BC=B′C′,AA′=BB′,AB=A′B′,AA′∥BB′,AB∥A′B′,
∴$\frac{EC′}{AE}=\frac{B′C′}{B′B}$=$\frac{1}{n}$,
∴$\frac{AD}{DC}$=$\frac{AA′}{BC′}$,
∴$\frac{n-\frac{1}{2}}{\frac{1}{2}+1}=\frac{n}{n+1}$,
整理得到2n2-2n-1=0
∴n=$\frac{1+\sqrt{3}}{2}$或$\frac{1-\sqrt{3}}{2}$(舍棄).
②當(dāng)DE=2EC′時(shí),
∵△A′B′C′是由△ABC平移,
∴BC=B′C′,AA′=BB′,AB=A′B′,AA′∥BB′,AB∥A′B′,
∴$\frac{EC′}{AE}=\frac{B′C′}{B′B}$=$\frac{1}{n}$,
∴$\frac{AD}{DC}$=$\frac{AA′}{BC′}$,
∴$\frac{n-2}{2+1}=\frac{n}{n+1}$,
整理得到:n2-4n-2=0
∴n=2+$\sqrt{6}$或2-$\sqrt{6}$(舍棄).
故答案為$\frac{1+\sqrt{3}}{2}$或2+$\sqrt{6}$.
點(diǎn)評(píng) 本題考查平移的性質(zhì)、平行成比例等知識(shí),圖形比較復(fù)雜,靈活運(yùn)用平行成比例是解決問題的關(guān)鍵,學(xué)會(huì)用方程的思想去解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com