【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點PBC邊上,將△CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則的值為( ).

A. B. C. D.

【答案】C

【解析】

根據(jù)折疊的性質可得出DC=DECP=EP,由∠EOF=BOP、∠B=E、OP=OF可得出△OEF≌△OBPAAS),根據(jù)全等三角形的性質可得出OE=OB、EF=BP,設EF=x,則BP=xDF=4x、BF=PC=3x,進而可得出AF=1+x.在RtDAF中,利用勾股定理可求出x的值,即可得出答案.

根據(jù)折疊,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP

在△OEF和△OBP中,∵,∴△OEF≌△OBPAAS),∴OE=OB,EF=BP

EF=x,則BP=x,DF=DEEF=4x

又∵BF=OB+OF=OE+OP=PE=PC,PC=BCBP=3x,∴AF=ABBF=1+x

RtDAF中,AF2+AD2=DF2,即(1+x2+32=4x2,解得:x=0.6,∴DF=4x=3.4,∴

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點分別在邊上,相交于點,如果已知,那么還不能判定,補充下列一個條件后,仍無法判定的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滿足下列條件的△ABC不是直角三角形的是()

A. BC=1,AC=2,AB=

B. BC=1,AC=2,AB=

C. BC:AC:AB=3:4:5

D. ∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,說明的理由.

解:因為 (已知)

所以____________

所以____________

因為 (已知)

所以 (等式性質)

所以____________

所以____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線l1:y=﹣x+n過點A(﹣1,3),雙曲線C:y= (x>0),過點B(1,2),動直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點F.

(1)求直線l1 , 雙曲線C的解析式,定點F的坐標;
(2)在雙曲線C上取一點P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動直線l2與雙曲線C交于P1 , P2兩點,連接OF交直線l1于點E,連接P1E,P2E,求證:EF平分∠P1EP2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為時,四邊形AMDN是矩形; ②當AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

同步練習冊答案