【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D.試說(shuō)明:AC∥DF.
解:∵∠1=∠2(已知),
∠1=∠3(),
∴∠2=∠3(等量代換).
∴∥(同位角相等,兩直線平行).
∴∠C=∠ABD ().
又∵∠C=∠D(已知),
∴∠D=∠ABD(等量代換).
∴AC∥DF().
【答案】對(duì)頂角相等;EC;DB;兩直線平行,同位角相等;內(nèi)錯(cuò)角相等,兩直線平行
【解析】解:∵∠1=∠2(已知),
∠1=∠3(對(duì)頂角相等),
∴∠2=∠3(等量代換),
∴EC∥DB(同位角相等,兩直線平行),
∴∠C=∠ABD (兩直線平行,同位角相等),
又∵∠C=∠D(已知),
∴∠D=∠ABD(等量代換),
∴AC∥DF(內(nèi)錯(cuò)角相等,兩直線平行).
【考點(diǎn)精析】利用平行線的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=α°,BO,CO分別是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)是( )
A.2α°
B.(α+60)°
C.(α+90)°
D.( α+90)°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知面包店的面包一個(gè)15元,小明去此店買面包,結(jié)賬時(shí)店員告訴小明:“如果你再多買一個(gè)面包就可以打九折,價(jià)錢會(huì)比現(xiàn)在便宜45元”,小明說(shuō):“我買這些就好了,謝謝.”根據(jù)兩人的對(duì)話,判斷結(jié)賬時(shí)小明買了多少個(gè)面包?( )
A.38
B.39
C.40
D.41
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上與表示數(shù)4的點(diǎn)距離7個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是( )
A. 11 B. -3 C. 12或-4 D. ﹣3或11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線交AB于E,交CD于F.求證:OE=OF.
(2)南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我國(guó)南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至A處時(shí),該島位于正東方向的B處,為了防止某國(guó)巡警干擾,就請(qǐng)求我國(guó)C處的魚監(jiān)船前往B處護(hù)航,測(cè)得C與AB的距離CD為20海里,已知A位于C處的南偏西60°方向上,B位于C的南偏東45°的方向上, ≈1.7,結(jié)果精確到1海里,求A、B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線將它分成15個(gè)三角形,則這個(gè)多邊形的邊數(shù)是( )
A. 14 B. 15 C. 16 D. 17
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O為AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠ACB的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:OE=OF;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形,并證明你的結(jié)論;
(3)在(2)的條件下,試猜想當(dāng)△ABC滿足什么條件時(shí)使四邊形AECF是正方形,請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),則∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變.請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )
A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com