定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖,若PB=PC,則點(diǎn)P為△ABC的準(zhǔn)外心.
已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上.求PA的長(zhǎng).(自己畫(huà)圖)

解:∵BC=5,AB=3,
∴AC=
①若PB=PC,設(shè)PA=x,則x2+32=(4-x)2
解得:,即PA=
②若PA=PC,則PA=2.
③若PA=PB,由圖知,在Rt△PAB中,不可能.
綜上可得:PA=2或
分析:先根據(jù)勾股定理求出AC的長(zhǎng)度,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況,根據(jù)三角形的性質(zhì)計(jì)算即可得解.
點(diǎn)評(píng):本題考查了勾股定理,等腰三角形的性質(zhì),讀懂題意,弄清楚準(zhǔn)外心的定義是解題的關(guān)鍵,根據(jù)準(zhǔn)外心的定義,要注意分三種情況進(jìn)行討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興)聯(lián)想三角形外心的概念,我們可引入如下概念.
定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=
12
AB,求∠APB的度數(shù).
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)根據(jù)三角形外心的概念,我們可引入如下概念:定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
(1)應(yīng)用:如圖1,PA=PB,過(guò)準(zhǔn)外心P作PD⊥AB,垂足為D,PD=
3
6
AB,求∠PAD;
(2)探究:如圖2,在Rt△ABC中,∠A=90°,BC=10,AB=6,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

三角形外心我們可以理解為:到三角形三個(gè)頂點(diǎn)距離相等的點(diǎn)稱三角形的外心,由此,我們定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
(1)應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=
12
AB,求∠APB的度數(shù).
(2)探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖,若PB=PC,則點(diǎn)P為△ABC的準(zhǔn)外心.
已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上.求PA的長(zhǎng).(自己畫(huà)圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(浙江紹興卷)數(shù)學(xué)(帶解析) 題型:解答題

聯(lián)想三角形外心的概念,我們可引入如下概念。
定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心。

舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心。
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案