分析 由四邊形ABCD是平行四邊形,得到AD∥BC,從而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,四邊形ABEF是菱形,由菱形的性質(zhì)得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°從而得出AB=AE=4,AP=2,過(guò)點(diǎn)P作PM⊥AD于M,得到PM=$\sqrt{3}$,AM=1,從而得到DM=5,由勾股定理求出PD、PB的長(zhǎng),即可得出結(jié)果.
解答 解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠AFB=∠FBE,
∵∠ABF=∠FBE,
∴∠ABF=∠AFB,
∴AB=AF,
同理AB=BE,
∴四邊形ABEF是菱形,
∴AE⊥BF,
∵∠ABC=60°,
∴∠ABF=30°,∠BAP=∠FAP=60°,△ABE為等邊三角形,
∴AB=AE=4,
∵AB=4,
∴AP=2,
過(guò)點(diǎn)P作PM⊥AD于M,如圖所示:
∴PM=$\sqrt{3}$,AM=1,
∵AD=6,
∴DM=5,
∴PD=$\sqrt{P{M}^{2}+D{M}^{2}}$=$\sqrt{(\sqrt{3})^{2}+{5}^{2}}$=2$\sqrt{7}$;
BP=$\sqrt{A{B}^{2}-A{P}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴菱形ABEF的面積=2×$\frac{1}{2}$BP•AE=2×$\frac{1}{2}$×2$\sqrt{3}$×4=8$\sqrt{3}$;
故答案為:2$\sqrt{7}$,8$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了平行四邊形的性質(zhì)、平行線的性質(zhì)、菱形的判定與性質(zhì)、含30°角的直角三角形性質(zhì)、勾股定理,等邊三角形的判定與性質(zhì)、菱形面積的計(jì)算等知識(shí);熟練掌握菱形的判定與性質(zhì)是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $3\sqrt{2}-1$ | B. | $\sqrt{15}-1$ | C. | $\sqrt{15}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10m | B. | 9m | C. | 8m | D. | 7m |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com