【題目】如圖,△ABC是等邊三角形,AC上有一點(diǎn)D,分別以BD為邊作等邊△BDE和等腰△BDF,邊BC、DE交于點(diǎn)H,點(diǎn)F在BA延長(zhǎng)線上且DB=DF,連接CE.
(1)若AB=8,AD=4,求△BDF的面積;
(2)求證:BC=AF+CE.
【答案】(1)12;(2)詳見(jiàn)解析.
【解析】
(1)作DH⊥AB于H,如圖1,利用等邊三角形的性質(zhì)得點(diǎn)D為AC的中點(diǎn),則BD⊥AD,利用含30度的直角三角形三邊的關(guān)系計(jì)算出DH、BF,從而得到△BDF的面積;
(2)如圖2,先證明△BAD≌△BCE得到AD=CE,∠4=∠3=60°,再證明∠ADF=∠HBD=∠5,則可判斷△ADF≌△CED,從而得到AF=CD,所以AC=AD+CD=CE+AF=BC.
(1)解:作DH⊥AB于H,如圖1,
∵△ABC是等邊三角形,AB=8,AD=4,
∴點(diǎn)D為AC的中點(diǎn),∠CAB=60°
∴BD⊥AD,
∴∠ADB=90°,
∵DH⊥AB,
∴FH=BH,∠ADH=30°
在Rt△ADH中,AH=AD=2,
∴BH=6,DH==2,
∴BH=HF=6,
∴△BDF的面積=×(6+6)×2=12;
(2)證明:如圖2,
∵△ABC、△DEB都為等邊三角形,
∴∠4=∠ABC=∠DBE=∠6=60°,BA=BC,BD=BE
∴∠1=∠2,
在△BAD和△BCE中
,
∴△BAD≌△BCE(SAS),
∴AD=CE,∠4=∠3=60°,
而∠CHE=∠DHB,
∴∠5=∠HBD,
∵∠4=∠F+∠ADF=60°,∠HBD+∠1=60°,
而∠1=∠F,
∴∠ADF=∠HBD=∠5,
在△ADF和△CED中
∴△ADF≌△CED(SAS),
∴AF=CD,
∴AC=AD+CD=CE+AF,
∴BC=AF+CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長(zhǎng)的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個(gè)地方,豎起竹竿(即AE),這時(shí),他量了一下竹竿的影長(zhǎng)(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長(zhǎng)度(即AB=4米),他又豎起竹竿,這時(shí)竹竿的影長(zhǎng)正好是一根竹竿的長(zhǎng)度(即BD=2米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說(shuō):“噢,我知道路燈有多高了!”同學(xué)們,請(qǐng)你和小明一起解答這個(gè)問(wèn)題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),經(jīng)過(guò)A(-2,6)的直線交x軸正半軸于點(diǎn)B,交y軸于點(diǎn)C,OB=OC,直線AD交x軸負(fù)半軸于點(diǎn)D,若△ABD的面積為27.
(1)求直線AD的解析式;
(2)橫坐標(biāo)為m的點(diǎn)P在AB上(不與點(diǎn)A,B重合),過(guò)點(diǎn)P作x軸的平行線交AD于點(diǎn)E,設(shè)PE的長(zhǎng)為y(y≠0),求y與m之間的函數(shù)關(guān)系式并直接寫(xiě)出相應(yīng)的m的取值范圍;
(3)在(2)的條件下,在x軸上是否存在點(diǎn)F,使△PEF為等腰直角三角形?若存在求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與應(yīng)用:
閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?/span>,所以,從而(當(dāng)a=b時(shí)取等號(hào)).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時(shí),函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問(wèn)題:
問(wèn)題1:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為x,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng)x=__________時(shí),周長(zhǎng)的最小值為_(kāi)_________.
問(wèn)題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時(shí), 的最小值為_(kāi)_________.
問(wèn)題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫(huà)出 △ABC關(guān)于y 軸的對(duì)稱圖形 △A1B1C1;
(2)畫(huà)出將△ABC 繞原點(diǎn) O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過(guò)的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=12,點(diǎn)F是AB的中點(diǎn),過(guò)點(diǎn)F作FD⊥AB交AC于點(diǎn)D.
(1)若△AFD以每秒2個(gè)單位長(zhǎng)度的速度沿射線FB向右移動(dòng),得到△A1F1D1,當(dāng)F1與點(diǎn)B重合時(shí)停止移動(dòng).設(shè)移動(dòng)時(shí)間為t秒,△A1F1D1與△CBF重疊部分的面積記為S.直接寫(xiě)出S與t的函數(shù)關(guān)系式.
(2)在(1)的基礎(chǔ)上,如果D1,B,F構(gòu)成的△D1BF為等腰三角形,求出t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名采購(gòu)員同去一家飼料公司購(gòu)買(mǎi)兩次飼料.兩次飼料的價(jià)格分別為元/千克和元/千克(、都為正數(shù),且),兩名采購(gòu)員的購(gòu)貨方式不同,其中甲每次購(gòu)買(mǎi)800千克;乙每次用去800元,而不管購(gòu)買(mǎi)多少飼料.
(1)用含、的代數(shù)式表示甲、乙兩名采購(gòu)員兩次購(gòu)買(mǎi)飼料的平均單價(jià)各是多少?
(2)若規(guī)定:誰(shuí)兩次購(gòu)買(mǎi)飼料的平均單價(jià)低,誰(shuí)的購(gòu)貨方式合算,請(qǐng)你判斷甲、乙兩名采購(gòu)員購(gòu)貨方式哪個(gè)更合算?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點(diǎn)E.
(1)求以直線x=4為對(duì)稱軸,且過(guò)C與原點(diǎn)O的拋物線的函數(shù)關(guān)系式,并說(shuō)明此拋物線一定過(guò)點(diǎn)E;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為N,M是該拋物線上位于C、N之間的一動(dòng)點(diǎn),求△CMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)、,拋物線過(guò)點(diǎn)A,B,與y交于C點(diǎn),點(diǎn)P(m,n)為拋物線上一點(diǎn).
(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;
(3)當(dāng)∠PAB=∠ABC時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com