【題目】如圖,在正方形內(nèi),以為邊作等邊三角形,連接并延長交于,則下列結(jié)論不正確的是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)四邊形ABCD是正方形,△EMC是等邊三角形,得出∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,再計算角度即可;通過做輔助線MD,得出MA=MD,MD=MN,從而得出AM=MN.
如圖,連接DM,
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠ADC=90°,
∵△EMC是等邊三角形,
∴BM=BC=CM,∠EMC=∠MBC=∠MCB=60°,
∴∠ABM=∠MCN=30°,
∵ BA=BM, MC=CD,
∴∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,
∴∠MAD=∠MDA=15°, 故A正確;
∴MA=MD,
∴∠DMN=∠MAD+∠ADM=30°,
∴∠CMN=∠CMD-∠DMN=45°,故B正確;
∵∠MDN=∠AND=75°
∴MD=MN
∴AM=MN,故C正確;
∵∠CMN=45°,∠MCN=30°,
∴,故D錯誤,故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)在網(wǎng)格中,畫出該函數(shù)的圖象.
(2)(1)中圖象與軸的交點記為A,B,若該圖象上存在一點C,且△ABC的面積為3,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中, ∠ACB=90°,∠CAB=30°,以AC,AB為邊向外作等邊三角形ACD和等邊三角形ABE,點F在AB上,且到AE,BE的距離相等.
(1)用尺規(guī)作出點F; (要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)連接EF,DF,證明四邊形ADFE為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,點為邊中點,點為邊中點;點, 為邊三等分點, , 為邊三等分點.小瑞分別用不同的方式連接矩形對邊上的點,如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?
(1)小瑞的探究過程如下
在圖2中,小瑞發(fā)現(xiàn), ;
在圖3中,小瑞對四邊形面積的探究如下. 請你將小瑞的思路填寫完整:
設(shè),
∵
∴,且相似比為,得到
∵
∴,且相似比為,得到
又∵,
∴
∴, ,
∴,則(填寫“”,“”或“”)
(2)小瑞又按照圖4的方式連接矩形對邊上的點.則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點D在⊙O上,連接CD且DC=BC,過C點作AD的垂線交AD延長線于E.
(1)求證:CE是⊙O的切線;
(2)若AB=5,AC=4,求tan∠DCE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,在一節(jié)40分鐘的課中,學(xué)生的注意力指數(shù)y隨時間x(分)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).
(1)分別求出線段AB和雙曲線CD的函數(shù)解析式,并寫出自變量的取值范圍;
(2)開始上課后第5分鐘時與第30分鐘時比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指數(shù)至少為36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講解完這道題目?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點在坐標(biāo)原點,正方形的邊與在同一直線上, 與在同一直線上,且,邊和邊所在直線的解析式分別為: 和,則點的坐標(biāo)是( )
A.(6,-1)B.(7,-1)C.(7,-2)D.(6,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com