【題目】已知:如圖,P是OC上一點,PD⊥OA于D,PE⊥OB于E,F(xiàn)、G分別是OA、OB上的點,且PF=PG,DF=EG. 求證:OC是∠AOB的平分線.

【答案】證明:在Rt△PFD和Rt△PGE中, , ∴Rt△PFD≌Rt△PGE(HL),
∴PD=PE,
∵P是OC上一點,PD⊥OA,PE⊥OB,
∴OC是∠AOB的平分線
【解析】利用“HL”證明Rt△PFD和Rt△PGE全等,根據(jù)全等三角形對應邊相等可得PD=PE,再根據(jù)到角的兩邊距離相等的點在角的平分線上證明即可.
【考點精析】本題主要考查了角平分線的性質(zhì)定理的相關知識點,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子里有標號分別為1,2,3,4,5,6的六個小球,這些小球除標號數(shù)字外都相同.

(1)從盒中隨機摸出一個小球,求摸到標號數(shù)字為奇數(shù)的小球的概率;

(2)甲、乙兩人用著六個小球玩摸球游戲,規(guī)則是:甲從盒中隨機摸出一個小球,記下標號數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機摸出一個小球,并記下標號數(shù)字.若兩次摸到小球的標號數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到小球的標號數(shù)字為一奇一偶,則判乙贏.請用列表法或畫樹狀圖的方法說明這個游戲?qū)、乙兩人是否公平?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七、八年級學生分別到雷鋒、毛澤東紀念館參觀,共589人,到毛澤東紀念館的人數(shù)是到雷鋒紀念館人數(shù)的2倍多56人.設到雷鋒紀念館的人數(shù)為x人,可列方程為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.為更好地決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整的統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)40萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一位旅客攜帶了30kg重的行李從上海乘飛機去北京,按民航總局規(guī)定:旅客最多可免費攜帶20kg重的行李,超重部分每千克按飛機票價格1.5%購買行李票,現(xiàn)該旅客購買了180元的行李票,則飛機票價格應是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級三班學生蘇琪為幫助同桌萬宇鞏固“平面直角坐標系四個象限內(nèi)及坐標軸上的點的坐標特點”這一基礎知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標系中找出點M(a,b)的位置.

(1)請你用樹狀圖幫萬宇同學進行分析,并寫出點M所有可能的坐標;

(2)求點M在第二象限的概率;

(3)張老師在萬宇同學所畫的平面直角坐標系中,畫了一個半徑為3的⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點A(4,3),B(3,1),C(1,2).

(1)在平面直角坐標系中分別描出A,B,C三點,并順次連接成△ABC;
(2)將△ABC向左平移6個單位,再向下平移5個單位得到△A1B1C1;畫出△A1B1C1 , 并寫出點A1 , B1 , C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:5(x2y)4(x2y)___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是。

查看答案和解析>>

同步練習冊答案