【題目】某市舉行傳承好家風(fēng)征文比賽,已知每篇參賽征文成績(jī)記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了他們的成績(jī),并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.

請(qǐng)根據(jù)以上信息,解決下列問(wèn)題:

(1)征文比賽成績(jī)頻數(shù)分布表中c的值是________;

(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;

(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).

【答案】(1)0.2;(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖見(jiàn)解析;(3)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù)為300.

【解析】1)由頻率之和為1,用1減去其余各組的頻率即可求得c的值;

(2)由頻數(shù)分布表可知 60≤m<70的頻數(shù)為:38,頻率為:0.38,根據(jù)總數(shù)=頻數(shù)÷頻率得樣本容量,再由頻數(shù)=總數(shù)×頻率求出a、b的值,根據(jù)a、b的值補(bǔ)全圖形即可;

(3)由頻數(shù)分布表可知評(píng)為一等獎(jiǎng)的頻率為:0.2+0.1=0.3,再用總篇數(shù)×一等獎(jiǎng)的頻率=全市一等獎(jiǎng)?wù)魑钠獢?shù).

(1)c=1-0.38-0.32-0.1=0.2,

故答案為:0.2;

(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,

補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖如圖所示

(3)由頻數(shù)分布表可知評(píng)為一等獎(jiǎng)的頻率為:0.2+0.1=0.3,

∴全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù)為:1000×0.3=300(篇),

答:全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù)為300.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你用實(shí)例解釋下列代數(shù)式的意義:

15a+10b;

23x;

3;

4;

5)(1-8%x

6;

7;

8;

9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OCOD,∠EDO與∠1互余.

1)求證:ED//AB;

2OF平分∠CODDE于點(diǎn)F,若∠OFD=65°,補(bǔ)全圖形,并求∠1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖(1),如果ABCDEF. 那么∠BAC+ACE+CEF=360°.

老師要求學(xué)生在完成這道教材上的題目后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小華首先完成了對(duì)這道題的證明,在證明過(guò)程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.

2)接下來(lái),小華用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點(diǎn)C,連接AC,EC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.

請(qǐng)你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問(wèn)題:

①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .

②補(bǔ)全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . 3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點(diǎn)G,H分別在直線AB、直線EF上,點(diǎn)C在兩直線外,連接CGCH,GH,且GH同時(shí)平分∠BGC和∠FHC,請(qǐng)?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

在初中數(shù)學(xué)課本中重點(diǎn)介紹了提公因式法和運(yùn)用公式法兩種因式

分解的方法,其中運(yùn)用公式法即運(yùn)用平方差公式:和完全平方公式:進(jìn)行分解因式,能運(yùn)用完全平方公式分解因式的多項(xiàng)式必須是三項(xiàng)式,其中有兩項(xiàng)能寫成兩個(gè)數(shù)(或式)的平方和的形式,另一項(xiàng)是這兩個(gè)數(shù)(或式)的積的2倍.當(dāng)一個(gè)二次三項(xiàng)式不能直接能運(yùn)用完全平方公式分解因式時(shí),可應(yīng)用下面方法分解因式,先將多項(xiàng)式變形為的形式,我們把這樣的變形方法叫做多項(xiàng)式的配方法.再運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行分解因式.

例如:

根據(jù)以上材料,完成相應(yīng)的任務(wù):

1)利用“多項(xiàng)式的配方法”將化成的形式為_______

2)請(qǐng)你利用上述方法因式分解:

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)我們知道“三角形三個(gè)內(nèi)角的和為 180°”現(xiàn)在我們用平行線的性質(zhì)來(lái)證明這個(gè)結(jié)論是正確的

已知:∠BAC、∠B、∠C 是△ABC 的三個(gè)內(nèi)角,如圖 1

求證:BAC+B+C=180° 證明:過(guò)點(diǎn) A 作直線 DEBC(請(qǐng)你把證明過(guò)程補(bǔ)充完整)

2)請(qǐng)你用(1)中的結(jié)論解答下面問(wèn)題:

如圖 2,已知四邊形 ABCD,求∠A+B+C+D 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿EF折疊后,EDBC交點(diǎn)為G,D、C分別在M、N的位置上,若∠2-1=40°,則∠EFC的度數(shù)為(

A. 115°B. 125°C. 135°D. 145°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在八年級(jí)(1)班學(xué)生中開(kāi)展對(duì)于“我國(guó)國(guó)家公祭日”知曉情況的問(wèn)卷調(diào)查.

問(wèn)卷調(diào)查的結(jié)果分為AB、C、D四類,其中A類表示“非常了解”B類表示“比較了解”;C類表示“基本了解”;D類表示“不太了解”班長(zhǎng)將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖

請(qǐng)根據(jù)上述信息解答下列問(wèn)題

1)該班參與問(wèn)卷調(diào)查的人數(shù)有 ;補(bǔ)全條形統(tǒng)計(jì)圖;

2)求出C類人數(shù)占總調(diào)查人數(shù)的百分比及扇形統(tǒng)計(jì)圖中類所對(duì)應(yīng)扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點(diǎn)A(0,2),點(diǎn)C(,0),如圖所示:拋物線經(jīng)過(guò)點(diǎn)B。

(1)求點(diǎn)B的坐標(biāo);

(2)求拋物線的解析式;

(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案