【題目】如圖(1),在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),將線段AB先向上平移2個單位長度,再向右平移1個單位長度,得到線段CD,連接AC,BD,構(gòu)成平行四邊形ABDC.
(1)請寫出點C的坐標為 ,點D的坐標為 ,S四邊形ABDC ;
(2)點Q在y軸上,且S△QAB=S四邊形ABDC,求出點Q的坐標;
(3)如圖(2),點P是線段BD上任意一個點(不與B、D重合),連接PC、PO,試探索∠DCP、∠CPO、∠BOP之間的關系,并證明你的結(jié)論.
【答案】(1)(0,2),(4,2),8;(2)Q(0,4)或Q(0,﹣4);(3)∠CPO=∠DCP+∠BOP,證明見解析
【解析】
(1)根據(jù)平移直接得到點C,D坐標,用面積公式計算S四邊形ABDC即可;
(2)設出Q的坐標,OQ=|m|,用S△QAB=S四邊形ABDC建立方程,解方程即可;
(3)作PE∥AB交 y 軸 于 點 E,利用兩直線平行,內(nèi)錯角相等即可得出結(jié)論.
解:(1)∵線段AB先向上平移2個單位長度,再向右平移1個單位長度,得到線段CD,
且A(﹣1,0),B(3,0),
∴C(0,2),D(4,2);
∵AB=4,OC=2,
∴S四邊形ABDC=AB×OC=4×2=8;
故答案為:(0,2);(4,2);8;
(2)∵點Q在y軸上,設Q(0,m),
∴OQ=|m|,
∴S△QAB=×AB×OQ=×4×|m|=2|m|,
∵S四邊形ABDC=8,
∴2|m|=8,
∴m=4或m=﹣4,
∴Q(0,4)或Q(0,﹣4).
(3)如圖,
∵線段CD是線段AB平移得到,
∴CD∥AB,
作PE∥AB交 y 軸 于 點 E,
∴CD∥PE,
∴∠CPE=∠DCP,
∵PE∥AB,
∴∠OPE=∠BOP,
∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,
∴∠CPO=∠DCP+∠BOP.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某港口P位于南北延伸的海岸線上,東面是大海.“遠洋”號、“長峰”號兩艘輪船同時離開港口P,各自沿固定方向航行,“遠洋”號每小時航行12n mile,“長峰”號每小時航行16n mile,它們離開港東口1小時后,分別到達A,B兩個位置,且AB=20n mile,已知“遠洋”號沿著北偏東60°方向航行,那么“長峰”號航行的方向是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在RtΔABC中,∠BAC=90°,點O是△ABC所在平面內(nèi)一點,連接OA,延長OA到點E,使得AE=OA,連接OC,過點B作BD與OC平行,并使∠DBC=∠OCB,且BD=OC,連接DE.
(1)如圖一,當點O在RtΔABC內(nèi)部時.
①按題意補全圖形;
②猜想DE與BC的數(shù)量關系,并證明.
(2)若AB=AC(如圖二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB=4,延長AB到點C,使得AB=2BC,反向延長AB到點D,使AC=2AD.
(1)求線段CD的長;
(2)若Q為AB的中點,P為線段CD上一點,且BP=BC,求線段PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB;
(2)過點O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(3)若CD=4,AC=4,求垂線段OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為了擴大生產(chǎn),決定購買6臺機器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機器可供選擇.其中甲型機器每日生產(chǎn)零件106個,乙型機器每日生產(chǎn)零件60個,經(jīng)調(diào)査,購買3臺甲型機器和2臺乙型機器共需要31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠購買機器的預算資金不超過34萬元,那么你認為該工廠有哪幾種購買方案?
(3)在(2)的條件下,如果要求該工廠購進的6臺機器的日產(chǎn)量能力不能低于400個,那么為了節(jié)約資金.應該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查方式,你認為最合適的是( )
A.為了了解同學們對央視《主持人大賽》欄目的喜愛程度,小華在學校隨機采訪了名七年級學生
B.咸陽機場對旅客上飛機進行安檢,采用抽樣調(diào)查方式
C.為了了解西安市七年級學生的身高情況,采用全面調(diào)查方式
D.為了了解我省居民的日平均用電量,采用抽樣調(diào)查方式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com