【題目】如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為( 。
A. B. 2 C. 2 D. 8
【答案】C
【解析】
作OH⊥CD于H,連結OC,如圖,根據(jù)垂徑定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可計算出半徑OA=4,則OP=OA-AP=2,接著在Rt△OPH中根據(jù)含30°的直角三角形的性質計算出OH=OP=1,然后在Rt△OHC中利用勾股定理計算出CH=,所以CD=2CH=2.
作OH⊥CD于H,連結OC,如圖,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=30°,∴OH=OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解一路段車輛行駛速度的情況,交警統(tǒng)計了該路段上午7::0至9:00來往車輛的車速(單位:千米/時),并繪制成如圖所示的條形統(tǒng)計圖.這些車速的眾數(shù)、中位數(shù)分別是( 。
A. 眾數(shù)是80千米時,中位數(shù)是60千米時
B. 眾數(shù)是70千米時,中位數(shù)是70千米時
C. 眾數(shù)是60千米時,中位數(shù)是60千米時
D. 眾數(shù)是70千米時,中位數(shù)是60千米時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=和y=在第一象限內的圖象如圖所示,點P在y=的圖象上,PC⊥x軸,交y=的圖象于點A,PD⊥y軸,交y=的圖象于點B.當點P在y=的圖象上運動時,以下結論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積不會發(fā)生變化;④當點A是PC的中點時,點B一定是PD的中點.其中一定正確的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品廠生產一種汽車裝飾品,每件生產成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關系如圖所示.
(1)當30≤x≤60時,求y與x的函數(shù)關系式;
(2)求出該廠生產銷售這種產品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關系式;
(3)銷售價格應定為多少元時,獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知邊長為4的菱形ABCD中,AC=BC,E,F分別為AB,AD邊上的動點,滿足BE=AF,連接EF交AC于點G,CE、CF分別交BD與點M,N,給出下列結論:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面積的最小值為3,④若AF=2,則BM=MN=DN;⑤若AF=1,則EF=3FG;其中所有正確結論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程有實數(shù)根.
(1)求m的值;
(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC=( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經過A、B兩點.
(1)求點A的坐標;
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標;
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com